
MBT for GlobalPlatform Compliance Testing:
Experience Report and Lessons Learned

Gil Bernabeu∗, Eddie Jaffuel†, Bruno Legeard‡§ and Fabien Peureux‡§
∗GlobalPlatform, USA, gil.bernabeu@globalplatform.org

†eConsult, France, eddie.jaffuel@econsult.fr
‡Smartesting R&D Center, France, {legeard,peureux}@smartesting.com

§Institut FEMTO-ST, France, {blegeard,fpeureux}@femto-st.fr

Abstract—Compliance testing is done to determine whether a
system meets a specified standard prescribed by a given authority.
One key goal of compliance testing is to ensure interoperability
between systems, on the basis of agreed norms and standards,
while also allowing acceptable variations to be inserted by the
compliant product vendors. This paper reports on the deployment
of a Model-Based Testing approach, based on the Smartesting
solution, to produce compliance test suites for GlobalPlatform
Specifications, which aim to ensure the long-term interoperability
of embedded applications on secure chip technology. After
explaining the context and the motivation to use a Model-Based
Testing approach as a part of the GlobalPlatform Compliance
Program since 2007, the paper describes the GlobalPlatform
Working Group testing process, and discusses the lessons learned
from this success story.

Keywords-Model-Based Testing, Compliance Test Suite, Glo-
balPlatform, Operational Experiments Feedback.

I. CONTEXT AND MOTIVATION

GlobalPlatform1 (GP for short) is a cross-industry and not-
for-profit association, which members are payment organiza-
tions such as American Express, MasterCard, or Visa Interna-
tional, telecom operators, like AT&T, France Telecom, NTT
or Verizon and industrial leaders (AMD, Apple, Blackberry,
Gemalto, Nokia, Samsung, etc.). GlobalPlatform identifies,
develops and publishes specifications facilitating secure and
interoperable deployment and management of multiple embed-
ded applications on secure chip technology. Its proven tech-
nical specifications are regarded as the international industry
standard for building a trusted end-to-end solution serving
multiple actors and supporting several business models. The
freely available specifications provide the foundation for mar-
ket convergence and innovative new cross-sector partnerships.
As depicted in Fig. 1, the technology has been adopted glob-
ally across finance, mobile/telecom, government, healthcare,
retail and transit sectors. GlobalPlatform also supports an
open compliance program ecosystem to ensure the long-term
interoperability of secure chip technology. Recent research
conducted by Eurosmart confirmed that 2012 shipments of
microcontroller smart secure devices (secure chips) are over
7 billion units, of which 2.6 billion units leverage GlobalPlat-
form technology.

1http://www.globalplatform.org

Fig. 1. GlobalPlatform Business Ecosystem

A. Historical GP Compliance Program Process

Key to market stability is the adoption of proven standards.
Industry acceptance of any standard or specification, however,
will only be achieved if there is a commitment to maintain
the stability of the specifications to encourage their adoption.
Standards, specifications and configurations are only as de-
pendable as the products developed to abide by them. This
is why it is important that the industry has a means to test
and verify product compliance. To achieve this, the first GP
Compliance Program, created in 2001, was organized using a
classical process:

1) One test tool vendor was selected to create a test suite.
2) The selected test tool vendor created the test suite.
3) The GP Compliance Working Group reviewed and val-

idated the given test suite.
4) Once committed, this test suite was used (using the

testing tool of the selected tool vendor) to qualify the
products.

However, this initiative was stopped because (i) the ecosys-
tem had little interest in validating the provided test suite, (ii)
each product vendor was using an in-house test environment
or had established a specific contract with another test tool
vendor, and (iii) the scope of testing was unclear. To overcome
these obstacles, the GP compliance process was advanced to
meet the requirements of its users.



B. Current GP Compliance Program Process

Since 2007, the GP Compliance Program is managed
using a unified process, which is described in Fig 2. The
Specification Working Group is in charge to define the
specifications and the configurations. The Compliance
Working Group reviews the coverage of the compliance test
suite, and arbitrates interpretation of the specification when
necessary. The Compliance Secretariat manages the test suite
creation and maintenance, and organizes the TestFests.

Fig. 2. Process of the GlobalPlatform Compliance Program

The TestFests comprise 3 or 4 days of face-to-face meetings,
involving the GP Secretariat, the test tool providers (usually
3 to 5 companies) and the product vendors (usually 2 to 4
companies). The ultimate goal of a TestFest is to qualify
the test tools (software and test harness), regarding a given
compliance test suite. During a TestFest, all tests of the test
suite that remain unchanged throughout the TestFest (even if
some test cases may be excluded) are executed on every test
tool and tests that are considered as wrong are excluded. The
product being tested remains unchanged during the TestFest:
only the test tool providers may correct their software or
test harness during the TestFest when expected results are
marked as wrong. At the end of the TestFest, each test tool
must produce the same result as the expected result for each
product, otherwise the test tool will not be qualified. The
GlobalPlatform compliance ecosystem is therefore equipped
with qualified test tools and qualified test laboratories. To
ensure the success of these events, which ensure the delivery
of an efficient GP Compliance Program, the next subsection
introduces the two major challenges, regarding the test suite
development that needs to be addressed.

C. Challenges about Test Suite Development

There were two major challenges for the GlobalPlatform
Compliance Program that had to be addressed regarding com-
pliance test suite development.

1) The test suite shall be open to any test execution tools: In
a classical document-based approach, the test plan is described
in an informal document, providing the initial conditions and

the test sequences at a high level (focusing on functionality
instead of technical details). Different test tools providers will
implement the corresponding test scripts, which are detailed
enough for execution. These implementations are subject to
interpretation because the test plan documentation is informal
and at a high level, and as such is ambiguous and, at times,
incomplete by nature.

2) The variants in specification and in test suite shall
be managed efficiently: GlobalPlatform is managing generic
specifications along side various specific configurations, which
are derived from the generic one. Each configuration is defined
for a specific domain or product and meets different the market
needs. GP then develops a compliance test suite for each
specific configuration (and not for the generic specification).
By definition, the generic specification is very open and
forms the basis for many market-focused configurations to
be developed. In a generic specification, the features are
often optional (using the word MAY in the text), alternative
options are described, and sometimes the generic specification
leaves blank some parts or indicates them as implementation-
dependent. In contrast, a specific configuration limits the scope
of the generic specification. Even if the specific configuration
is mostly referring to the generic specification, the specific
configuration clarifies the blank points, indicates which options
have to be supported (using the word MUST or MUST NOT
in the text). Knowing that the purpose is to have a compliance
test suite for each specific configuration, the challenge is to
understand which parts of the test suite can be reused in order
to avoid duplicated effort.

D. Model-Based Testing Integration

To tackle these issues, the GlobalPlatform consortium
has decided since 2007 to use a Model-Based Testing
approach [1] using the tool CertifyIt provided by the company
Smartesting2. Basically, Model-Based Testing [2] (MBT
for short) refers to the processes and techniques for the
automatic derivation, from formal models, of abstract test
cases (abstract because it relies on the models). It allows
the generation of concrete tests from abstract tests, and the
manual or automated execution of these concrete tests. The
Smartesting MBT solution takes as input a UML model of
the expected behaviour of the system under test, and uses
model coverage criteria to automatically generate test cases,
which can be translated into executable test scripts.

Section II describes the test generation process, based
on the Smartesting solution, to produce the compliance test
suites, whereas Sect. III and IV respectively gives the current
results regarding the GP compliance test suite generation, and
discusses the lessons learned from this experience. Finally,
Sect. V concludes the paper by giving the major feedback and
the current status of this success story.

2http://www.smartesting.com



II. MODEL-BASED COMPLIANCE TEST GENERATION

Figure 3 gives an overview of the MBT process to address
the GlobalPlatform conformance issues. The process starts on
the left at the textual requirements, from which a test designer
team derives the Test Objective Charter and a UML test model,
enabling the automated generation of abstract compliance test
suites. Finally, an adaptation layer generates compliance test
scripts, which can be directly executed on a system by a
manual tester. These steps are described in the next sections.

Fig. 3. Process of the Model-Based Compliance Test Suite Generation

A. From GP Specifications to Test Objective Charter

Basically, a Test Objective Charter (TOC) takes the form a
an Excel sheet (as shown in Fig. 4), which is composed of:

• A Requirement List, which is textual extracts from the
specifications with requirement identifiers in order to
produce a clear traceability link between the tests and
the specifications at the end.

• For each requirement, a list of Test Aims (also called test
objectives or test cases) and Expected Observations (also
called pass criteria or verifications).

Such a TOC does not contain the prerequisites (like required
personalizations), neither the test sequences details. Indeed the
purpose of a TOC is to discuss and get an agreement on the
coverage (the WHAT to cover) before starting the entire test
suite definition (the HOW to cover). For the GlobalPlatform
purpose, the TOC usually relies on one specific configuration.

B. From GP Specifications and TOC to Test Model

The test model represents the expected behavior of the
Application Protocol Data Unit (APDU) specified in the
GlobalPlatform standard. Within the Smartesting approach, a
subset of UML, called UML4MBT [3], is used: it includes
UML class diagrams, state machines and OCL constraints
to formalize the control points and observation points, the
expected dynamic behavior and business entities described in
the standard [4].

Fig. 4. Excerpt of a Test Objective Charter File

IBM Rational Software Architect with Smartesting CertifyIt
testing plug-in is used to design the test model dedicated for
the testing of the specifications (including generic specification
and specific configurations), but restricted to the Test Objective
Charter. The test model also contains documentation on UML
element (like method or enumeration literal). This documen-
tation helps to make the bridge between the abstraction level
of the model, the concrete command and data that have to
be executed on the concrete application (it will be part of
the generated Adaptation Layer Specification introduced later).
This test model encompasses the options available by the
generic specification, and describes the behavior of the system
if the option is supported or not. The test model has a dedicated
architecture (see Fig 5) that allows managing the common
part of the generic specification and also the specific part. The
generic common model part is reused (as an inclusion) by the
specific model part.

Fig. 5. Test Model Architecture

Figures 6a and 6b respectively introduce an example of class
diagram (depicting executable load files that can be executed
by some applications embedded in a card) and an example of
object diagram that instantiates this kind of architecture.

(a) Class Diagram (b) Object Diagram

Fig. 6. Examples of UML Test Model Diagram



C. Generating the Test Suite from the Test Model
Such a test model is precise and complete enough to allow

automated derivation of the compliance test suite. This deriva-
tion is a fully automated process supported by the Smartesting
CertifyIt testing tool [5], which generates abstract test cases
(abstract because relying on the UML test model) to cover the
items of the Test Objective Charter file. Each generated test
case is typically a sequence of APDUs, with input parameters
and expected output values for each action. More precisely,
three test suite artifacts are generated and derived from the
test model: (i) the test suite in XML format for test execution
purpose, (ii) the test suite in HTML for test documentation
purpose and (iii) the Adaptation Layer specification. The next
subsections give an overview of these generated artifacts.

D. Publishing the Test Suite Artifacts
1) Test Suite in XML and HTML: The test suite includes

the following:
• The abstract test cases (or abstract test sequences), which

gives the necessary steps to fulfil the initial conditions
of the tests, and also the test sequence covering the test
objective and checking the pass criteria. The abstracts
test cases describe all the commands with input data and
expected output data. The abstract test cases are published
into two formats: XML for execution purpose (it is to
be imported into test execution tools) and in HTML for
documentation purpose (it is to be used for human review
and understanding). Figures 7a and 7b respectively show
an example of a test case presentation in HTML format,
in which the sequence of APDU calls is described in
the Synthesis frame at the bottom, and an excerpt of the
details of each APDU call with the input and expected
data (the figure precisely shows the two calls nomi-
nal APDU select and nominal APDU initializeUpdate,
which are the second and the third steps of the test case
introduced in Fig. 7a).

(a) Test Case (b) Test Case Steps

Fig. 7. Examples of Test Suite Document in HTML Format

• The Test Objective Charter information (introduced at
the beginning of this section) including now the link
from the requirements to the abstract test cases through
a traceability matrix. Figure 8 shows an example of such
a traceability matrix in HTML format.

Fig. 8. Traceability Matrix from TOC Items to Test Cases Description

2) Adaptation Layer Specification: The Adaptation Layer
(AL for short, and also called Automation Layer or Ab-
straction Layer) implements the mapping between the ab-
stract keywords used in the test model and the low level
commands to be executed on the system under test. Hence,
the Adaptation Layer specification is automatically generated
from the test model (and the documentation attached to the
modeling structures), while its implementation is dependent
on the test execution tool environment and language, and so
is left in charge of the test tool providers. As shown in Fig. 9,
the generated files allow the user to document the APDU
commands Fig. 9a as well as the concrete data to be used
(Fig. 9b) in order to concretize and execute the generated test
suite.

(a) APDU Command (b) Constant Data

Fig. 9. Extracts of Adaptation Layer Specifications

III. TECHNICAL RESULTS

From 2007 till present, the GP Compliance Program has
been using this MBT process to produce its compliance test
suite. The metrics of this GP Compliance Program in summer
2014 are the following: 15 active compliance test suites have
been generated using the current model-based compliance test
suite development (i.e. excluding the previous versions of the
test suites, which were manually designed), comprising in
nearly 6000 tests cases. These test suites are used every year
during the TestFests to qualify the test tools, which are then
used by approved GlobalPlatform laboratories. Their relevance
constitutes a crucial and indispensable key factor that makes
these events successful.

Technically, the developed compliance test suites cover the
following configurations, derived from the generic specifica-
tion GlobalPlatform Card Specifications version 2.2.1 [6]:

• UICC Configuration v1.0.1 (Telecom configuration)
• Contactless Extension for UICC v1.0 (Telecom configu-

ration)



• Mapping Guidelines v1.0.1 (Banking configuration)
• Basic Financial Configuration (Banking configuration)
• ID Configuration v1.0 (Identity Configuration)
• Common Implementation Requirements v1.0 (Generic

Configuration)
• Secure Element Configuration v1.0 (Embedded Secure

Element Configuration)
Several test suites are also related to other independent spec-

ifications (without configuration), such as Card Compliance
(SWP/HCI test suites from ETSI, Amendment B (SCP81),
Secure Element Access Control v1.0 - applet side) and Device
Compliance (Secure Element Access Control v1.0 - device
side, Open Mobile API Specification v2.05 from SIMalliance
consortium - transport API, and Trusted Execution Environ-
ment).

This approach has proven to be very successful: extensions
of the use of the proposed model-based testing approach have
already been conducted and confirm the relevance and benefits
of the approach. It mainly concerns modules of the Global-
Platform System Group. Basically, it is a Trusted Service
Manager (TSM) and is a role in a Near Field Communication
(NFC) ecosystem. It acts as a neutral broker that sets up
business agreements and technical connections with Mobile
Network Operators (MNOs), phone manufacturers or other
entities controlling the secure element on mobile phones. The
TSM enables service providers to distribute and manage their
contactless applications remotely by allowing access to the
secure element in NFC-enabled handsets.

New integrations are also being conducted, especially re-
garding the GlobalPlatform Device Group, which defines
trusted applications running inside a Trusted Execution En-
vironment (TEE). The TEE is a secure area that resides in the
main processor of a smart phone (or any mobile device) and
ensures that sensitive data is stored, processed and protected in
a trusted environment. The TEE ability to offer safe execution
of authorized security software, known as Trusted Applica-
tions, enables it to provide end-to-end security by enforcing
protection, confidentiality, integrity and data access rights.

IV. LESSONS LEARNED FROM EXPERIENCE

This section summarizes the lessons learned about MBT in-
tegration for GlobalPlatform compliance issues, regarding the
valuable benefits noticed from this experience, and according
to the initial challenges introduced in Sect. I-C.

A. The test suite shall be open to any test execution tools

Since test cases are provided as abstract in a standard XML
format, the following benefits are delivered:

• The test suite is open to any test-execution tool.
• As the abstract test scripts are delivered in XML format, it

reduces the effort for the execution tool supplier to imple-
ment the test suite, because they are only implementing
the complementary part of the Adaptation Layer.

• All the test tools are using the same scripts, which avoid
contradictory interpretation of the test documentation.

B. The variants in test suite shall be managed efficiently
The use of model-based approach makes it possible to give

structure to the whole process as following:
• The test model is used as a reference and can be reused

since it is usually composed of a generic part (specifying
the MUST and MUST NOT of the specification) and a
specific part (specifying the MAY of the specification).

• The Test Objective Charter, as well as test suites and
adaptation layer specification, can also be reused.

C. Other Benefits
Other benefits, directly inherited from well-known advan-

tages of the MBT approaches [7], have been noticed within
the MBT compliance process. It mainly concerns:

• Test case generation is an automated process and so more
predictive and less error-prone than manual processes.

• It provides the generated test cases with a clear functional
coverage metric from the viewpoint of the TOC.

• All generated assets (XML and HTML test suites, Adap-
tation Layer Specification) are kept in sync because they
are derived from one common asset (the test model).

• It helps to leverage existing investments in test manage-
ment skills, tools, and processes.

• It reduces test maintenance costs because only the test
model is managed instead of the test cases.

V. CONCLUSION AND FUTURE WORKS

From the launch of the GP Compliance Program in 2007
until the present day, GP has been using Model-Based Testing
to produce its compliance test suite, which is now providing a
unique value: the test suite (i.e. scripts) is usable for integration
to the product vendors in-house systems, the test suite is open
to any test tool vendor, the test suite is validated in real-
time, and the test suite supports product variants. This MBT
integration is therefore a concrete success story, which today
enables and motivates GP Working Groups to extend its use,
which is currently focused on system compliance.

REFERENCES

[1] G. Bernabeu and N. Lavabre, “Model-based testing for a world-
wide compliance program,” in 1st User Conference on Advanced
Automated Testing (UCAAT’13), Paris, France, Oct. 2013, avalaible
at http://ucaat.etsi.org/2013/presentations/Keynote MBT%20for%20a%
20Compliance%20Program-GlobalPlatform-GilBernabeu.pdf.

[2] M. Utting and B. Legeard, Practical Model-Based Testing - A tools
approach. San Francisco, CA, USA: Morgan Kaufmann, 2006.

[3] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and
M. Utting, “A subset of precise UML for model-based testing,” in Proc. of
the 3rd Int. Workshop on Advances in Model-Based Testing (AMOST’07).
London, UK: ACM Press, Jul. 2007, pp. 95–104.

[4] E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard, F. Peureux, M. Ut-
ting, and E. Torreborre, “Model-based testing from UML models,” in
Proc. of the Int. Workshop on Model-Based Testing (MBT’06), ser. LNCS,
vol. 94. Dresden, Germany: Springer, Oct. 2006, pp. 223–230.

[5] F. Bouquet, C. Grandpierre, B. Legeard, and F. Peureux, “A test gen-
eration solution to automate software testing,” in Proc. of the 3rd Int.
Workshop on Automation of Software Test (AST’08). Leipzig, Germany:
ACM Press, May 2008, pp. 45–48.

[6] GlobalPlatform Card Specification Version 2.2.1, Jan. 2001, avalaible at
http://www.globalplatform.org/specificationscard.asp.

[7] A. Dias-Neto and G. Travassos, “A Picture from the Model-Based Testing
Area: Concepts, Techniques, and Challenges,” Advances in Computers,
vol. 80, pp. 45–120, Jul. 2010, ISSN: 0065-2458.


