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Abstract

Simulation has become an indispensable tool for researchers to ex-
plore systems without having recourse to real experiments. Depending
on the characteristics of the modeled system, methods used to repre-
sent the system may vary. Multi-agent systems are, thus, often used
to model and simulate complex systems. Whatever modeling type
used, increasing the size and the precision of the model increases the
amount of computation, requiring the use of parallel systems when it
becomes too large. In this paper, we focus on parallel platforms that
support multi-agent simulations. Our contribution is a survey on exist-
ing platforms and their evaluation in the context of high performance
computing. We present a qualitative analysis, mainly based on plat-
form properties, then a performance comparison using the same agent
model implemented on each platform.

1 Introduction

In the field of simulation, we often seek to exceed limits, that is to say analyse
larger and more precise models to be closer to the reality of a problem.
Increasing the size of a model has however a direct impact on the amount
of needed computing resources and centralised systems are often no longer
sufficient to run these simulations. The use of parallel resources allows us to
overcome the resource limits of centralised systems and also to increase the
size of the simulated models.
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There are several ways to model a system. For example, the time behav-
ior of a large number of physical systems is based on differential equations.
In this case the discretization of a model allows its representation as a linear
system. It is then possible to use existing parallel libraries to take advantage
of many computing nodes and run large simulations. On the other hand it
is not always possible to model any time dependent system with differential
equations. This is for instance the case of complex systems. A complex
system is defined in [25] as "A system that can be analyzed into many com-
ponents having relatively many relations among them, so that the behavior
of each component depends on the behavior of others". Thus the complexity
of the dependencies between the phenomena that drive the entities behavior
makes it difficult to define a global law that models the entire system. For
this reason multi-agent systems are often used to model complex systems
because they rely on an algorithmic description of agents that interact and
simulate the expected behavior. From the viewpoint of increasing the size of
simulations, multi-agent systems are constrained to the same rules as other
modelling techniques but there exists less support for parallel execution of
the models.

In this article, we focus on multi-agent platforms that provide parallel
distributed programming environments for multi-agent systems. Recently,
the interest for parallel multi-agent platforms has increased. This is because
parallel platforms offer more resources to run larger agent simulations and
thus allows to obtain results or behavior that was not possible to obtain
with smaller number of agents (eg. simulation of individual motions in a
city/urban mobility).

The contribution of this article is a survey on parallel distributed multi-
agent platforms. This survey is based on an extensive bibliographical work
done to identify the existing platforms, a qualitative analysis of these plat-
forms in terms of ease of development, distribution management or proposed
agent model, and a performance evaluation based on a representative model
run on a HPC cluster.

The article is organised as follows. First, we give the context of multi-
agent system (MAS) in general and parallel distributed multi-agent systems
(PDMAS) in particular. We then introduce the different multi-agent plat-
forms found in our bibliographical research. In the third section, we describe
the method used to classify platforms and we describe the model imple-
mented in each platform to evaluate its performance. In the fourth section,
we present the qualitative comparison of the different PDMAS followed by
the benchmark based on the implemented model. We finish the paper with
conclusion and future work.
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2 Related works

The concept of agent has been studied extensively for several years and in
different domains. It is not only used in robotics and other fields of artificial
intelligence, but also in fields such as psychology [6] or biology [23]. One of
the first definitions of the agent concept is due to Ferber [13] :

"An agent is a real or virtual autonomous entity, operating
in a environment, able to perceive and act on it, which can com-
municate with other agents, which exhibits an independent be-
havior, which can be seen as the consequence of his knowledge,
its interactions with other agents and goals it need to achieved".

A multi-agent system, or MAS, is a platform that provides the mandatory
support to run simulations based on several autonomous agents. These
platforms implement functions that provide services such as agent life cy-
cle management, communication between agents, agent perception or en-
vironment management. Among well known platforms we can cite Repast
Simphony [21], Mason [19], NetLogo [28] and Gama [1]. These platforms
however do not natively implement a support to run models in parallel and
it is necessary to develop a wrapper from scratch, in order to distribute or
parallelize a simulation. There exists several papers that propose survey on
these multi-agent platforms [29, 5, 4, 16].

Some platforms like RepastHPC [10], D-Mason [12], Pandora [2], Flame
[8] or JADE [3] provide a native support for parallel execution of models.
This support usually includes the collaboration between executions on sev-
eral physical nodes, the distribution of agents between nodes and so on.
During our analysis of the literature, we did not find any survey about par-
allel multi-agent platforms except the paper written by Coakley and al. [8].
This comparison is based on qualitative criteria such as the implementation
language but the paper does not provide any performance comparison of the
studied platforms.

After an extensive bibliographical work, we identified 10 implementations
or projects of parallel multi-agent platforms. For each platform we tried
to download the source or executable code and we tried to compile it and
test it with the provided examples and templates. Some of the platforms
cannot be included in our study because there is no available source code
or downloadable executable (MACE3J [15], JAMES[17], SWAGES [24]), or
because only a demonstration version is available (PDES-MAS [22, 27]), or
because there is a real lack of documentation (Ecolab [26]). It was thus not
possible to build a new model in these platforms and thus to assess their
parallel characteristics and performance. These platforms have subjected to
a qualitative analysis which is not included in this paper.

For the 5 remaining platforms, on which we were able to implement our
model, we can consider that they truly offer a functioning parallel multi-agent
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support. We succinctly present each of these platforms in the following.
D-Mason (Distributed Mason) [12] is developed by the University of

Salerno. D-Mason is the distributed version of the Mason multi-agent plat-
form. The authors choose to develop a distributed version of Mason to
provide a solution that does not require users to rewrite their already devel-
oped simulations and also to overcome the limitations on maximum number
of agents. D-Mason uses ActiveMQ JMS as a base to implement communi-
cations. D-Mason uses the Java language to implement the agent model.

Flame [8] is developed by the University of Sheffield. Flame was designed
to allow a wide range of agent models. Flame provides specifications in the
form of a formal framework that can be used by developers to create models
and tools. Flame allows parallelization using MPI. Implementing a Flame
simulation is based on the definition of X-Machines [9] which are defined as
finite state automata with memory. In addition, agents can send and receive
messages at the input and the output of each state.

Jade [3] is developed by the Telecom laboratory of Italia. The aims of
Jade are to simplify the implementation of distributed multi-agent models
across a FIPA compliant [3] middleware and to provide a set of tools that
support the debugging and the deployment phases. The platform can be dis-
tributed across multiple computers and its configuration can be controlled
from a remote GUI. Agents are implemented in Java while the communica-
tions relay on the RMI library.

Pandora [2] is developed by the Supercomputing center of Barcelona.
It is explicitly programmed to allow the execution of scalable multi-agent
simulations. According to the literature, Pandora is able to treat thousands
of agents with complex actions. Pandora also provides a support for a geo-
graphic information system (GIS) in order to run simulations where spatial
coordinates are used. Pandora uses the C ++ language to define and to im-
plement the agent models. For the communications, Pandora automatically
generates MPI code from the Pandora library.

RepastHPC [10] is developed by the Argone institute of USA. It is a
part of a series of multi-agent simulation platforms: RepastJ and Repast
Simphony. RepastHPC is specially designed for high performance environ-
ments. RepastHPC use the same concepts as the core of RepastSimphony,
that is to say it uses also the concept of projections (grid, network) but this
concept is adapted to parallel environments. The C + + language is used
to implement an agent simulation but the ReLogo language, a derivative
of the NetLogo language, can also be used. For the communications, the
RepastHPC platform relays on MPI using the Boost library [11].

From these descriptions we can note that some platforms have already
been designed to target high performance computing systems such as clusters
whereas others are more focused on distribution on less coupled nodes such
as a network of workstations.
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3 Survey methodology

In this section we explain the methodology used to make this survey. As
already stated we started by a bibliographical search (using keywords on
search engines and following links cited in the studied articles). This bib-
liographical search allowed us to establish a first list of existing platforms.
By testing the available platforms we established a second list of functioning
platforms. To our knowledge this list is complete and their is no other avail-
able and functional platform that provide a support for parallel distributed
MAS. Note we only concentrate on distributed platforms and that the list
excludes shared memory parallel platforms and many-cores (as GPU or Intel
Xeon Phi) platforms. After we defined different criteria to compare and anal-
yse each platform. We finished by implementing a reference model on each
platform and executing it in order to compare the platform performance.
These evaluation steps are detailed in the following.

This survey mainly focuses on the implementation, more precisely the
development, of models and their execution efficiency. To classify the plat-
forms we defined two sets of criteria: first, implementation and execution
based criteria and, second, criteria about classical properties of parallel sys-
tems. We briefly explain in which correspond each criteria.

For the implementation and execution criteria, all platforms have their
own constraints that impact on the ease of the model implementation. The
chosen criteria are:

1. Programming language,

2. Agent representation

3. Simulation type, time-driven or event-driven

4. Reproductibility, do several executions of a simulation give the same
results?

For the classical properties of parallel systems, we focus on:

1. Scalability of platform, in terms of agents and nodes,

2. Load balancing, agent distribution,

3. MultiThread execution, to take benefit of multicore processors,

4. Communication library.

To further compare the platforms, we have defined a reference agent
model that we implemented on each platform. The reference model is based
on three important behaviors for each agent: the agent perception, the com-
munications between agents and/or with the environment and agent mobil-
ity. The reference model simulates each of these behaviors.
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Figure 1: AML representation of the reference agent model

Figure 1 gives an AML [7] (Agent Modeling Language) representation
of our reference model. The Environment is represented by a square grid.
Agents are mobile and move randomly on the grid. A vision characterised
by the "radius" property is also associated with each agent. It represents
the limited perception of the agent on the environment.

Each agent is composed of 3 sub-behaviors :

1. The walk behavior allows agents to move in a random direction on the
environment. This behavior is used to test the mobility and the per-
ception of the agents. As the agents walk through their environment to
discover other agents and other parts of the environment, interactions
and communications with the environment are also tested with this
behavior.

2. The interact behavior allows agents to interact and send messages to
other agents in their perception fields. This behavior intends to simu-
late communications between agents and to evaluate the communica-
tion support of the platforms.

3. The compute behavior allows agents to compute a "Fast Fourier Trans-
form (FFT)" [14] in order to represent a workload. This behavior in-
tends to simulate the load generated by the execution of the agent
inner algorithms.

The global agent behavior consists in performing each of this three be-
haviors at each time step. The reference model has several parameters that
determine the agent behavior and also the global model properties. For in-
stance, the model allows to vary the workload using different sizes of input
for the FFT calculus. It is also possible to generate more or less commu-
nications between agents by setting the number of contacted agents in the
interact behavior or to assess the agent mobility by setting the agent speed
in the walk behavior.
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4 Qualitative analysis

In this section we expose two levels of comparisons between the studied plat-
forms: first a qualitative comparison using the previously presented criteria
and second a performance comparison using the reference model.

Table 1 gives a synthetic representation of the comparison for the im-
plementation and execution criteria. Most platforms use classical languages
such as C-C++ or Java to define agents, except the Flame platform which
uses the XMML language. The XMML language is an extension of the XML
language designed to define X-Machines. Note that the RepastHPC platform
implements, in addition to the C++ programming language, the widespread
Logo agent language. The Repast-Logo or R-Logo is the Repast implemen-
tation of Logo for C++. It allows to simplify the simulation implementation
at the price of a lower power of expression compared to C++.

RepastHPC D-Mason Flame Pandora Jade
Prog. lang. C++/R-Logo Java XMML/C C/C++ Java
Agent repre-
sent.

Object Object X-Machine Object Object

Simu. type event-driven time-driven time-driven time-driven time-driven
ReproductibilityYes Yes No Yes No

Table 1: Comparison of implementation and execution properties

Agents are usually defined as objects with methods representing behav-
iors. An agent container gathers all the agents. This container is cut and
distributed in the case of parallel execution. The agent implementation is dif-
ferent for the Flame platform that does not use the object concept to define
a agent but rather uses automatas called X-Machines. In a X-Machine, a be-
havior is represented by a state in the automata and the order of execution
between behaviors are represented by transitions. This difference changes
the programming logic of a model but induces no limitation compared with
other platforms because agents are in fact encoded in C language.

For the simulation type, event or time driven, all platforms use the time-
driven approach except RepastHPC which is based on the event-driven ap-
proach. RepastHPC however allows to fix a periodicity to each scheduled
event, so that we can reproduce the behavior of time-driven simulations.

Finally all platforms allow agents to communicate. This communication
can be performed either internally with agents that are on the same node,
or externally, with agents that are on different nodes. The D-Mason and
Pandora platforms propose remote method invocations to communicate with
other agents while the other platforms use messages to communicate between
agents.

Table 2 summarises the criteria of the platforms about classical properties
of parallel systems. Globally we can note that all studied platforms meet
the demands for the development of parallel simulations. Note that we did
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not find any information on the scalability property of the Pandora and Jade
platforms, so they are marked as Not Available (NA) for this property. To
efficiency exploit the power of several nodes the computing load must be
balanced among them. There is different ways to balance the computing
load . The load can be balanced at the beginning of the simulation (Static)
or adapted during the execution (Dynamic). A dynamic load balancing is
usually better as it provides a better adaptation in case of load variation
during the model execution, but it can also be subject to instability. Most
platforms use dynamic load balancing except the Jade and Flame platforms.
In [20] the authors propose a way to use dynamic load balancing with the
Flame platform.

RepastHPC D-Mason Flame Pandora Jade
Scalability 1028

proc. [18]
36 nodes [8] 432 proc. [8] NA NA

Load Balancing Dynamic Dynamic Static [8] Dynamic Static [3]
Multithread exec Yes [8] Yes [12, 8] No [8] Yes Yes
Com. library MPI [11, 10] JMS [12] MPI [18] MPI [2] RMI

Table 2: Comparison classical properties of parallel systems

Note that only Flame does not support multi-threaded executions. The
platform however relays on the MPI messaging library. As most MPI libraries
provide optimised implementations of message passing functions when the
communicating processes are on the same node, using processes located on
the same node instead of threads does not lead to large overhead. In the
implementation of a multi-agent system this probably leads to equivalent
performance as the simplification of synchronisation issues may compensate
the cost of using communication functions.

Last, the communication support for most platforms is MPI. This is not
surprising for platforms targeting HPC systems as this library is mainly
used on these computers. Note that the D-Mason platform relays on the
JMS communication service despite it is not the most scalable solution for
distributed environments. An MPI version of D-MASON is in development.
Finally, the Jade platform is based on the java Remote Method Invocation
(RMI) library which is not very adapted to parallel applications as it is based
on synchronous calls. During the model implementation we also noted that
the Jade platform seems to be more oriented for equipment monitoring and
cannot be run on HPC computers due to internal limitations. Jade is thus
not included in the rest of the comparisons.

5 Performance evaluation

For the performance evaluation we have implemented the reference model de-
fined in section 3 on the four functional platforms: RepastHPC, D-MASON,
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Flame, Pandora. During this model implementation, we did not encounter
noticeable difficulties expect with the RepastHPC platform for which we
have not been able to implement external communications, communications
between agents running on different nodes. RepastHPC does not have the
native mechanisms to make it whereas it is possible to implement it on the
other platforms. RepastHPC actually offers the possibility to interact with
an agent on an other node but not to report the modifications.

Although we have been able to run the four platforms, D-Mason, Flame,
Pandora, RepastHPC, on a standard workstation, only two of them (RpastHPC,
Flame) have successfully run on our HPC system. The D-Mason platform
uses a graphical interface that cannot be disconnected. We are thus not able
to run D-MASON on our cluster, only accessible through its batch manager.
The Pandora simulations have deadlock problems even if we use examples
provided with the platform. For these reasons the presented results only
consider the Flame and RepastHPC platforms.

We have realised several executions in order to exhibit the platform be-
haviors concerning scalability (Figures 2 and 3) and workload (Figure 4).
To assess scalability we vary the number of nodes used to execute the sim-
ulations while we fix the number of agents. We then compute the obtained
speedup. For workload we fix the number of nodes to 8 and we vary the
number of agents in the simulation. Each execution is realised several times
to assess the standard variation and the presented results are the mean of
the different execution durations. Due to a low variation in the simulation
runtime, the number of executions for a result is set to 10.
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Figure 2: Scalability of FLAME simulations using 10 000 agents, FFT 100
and 200 cycles

About the HPC experimental settings, we have run the reference model
on a 764 cores cluster using the SGE batch system. Each node of the cluster
is a bi-processors, with Xeon E5 (8*2 cores) processors running at 2.6 Ghz
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Figure 3: Scalability of RepastHPC simulations using 10 000 agents, FFT
100 and 200 cycles

frequency and with 32 Go of memory. The nodes are connected through a
non blocking DDR infinyBand network organised in a fat tree. The system
is shared with other users but the batch system garanties that the processes
are run without sharing their cores.

Execution results for scalability for a model with 10 000 agents are given
on Figure 2 and 3, with the ideal speedup reference. Note that the reference
time used to compute the speedup is based on a two core run of the simula-
tions. This is due to RepastHPC which cannot run on just one core so that
its reference time must be based on two core runs. The speedup is therefore
limited to half the number of nodes. We can note that both platforms scale
well up to 32 cores but the performance does not progress so well after, be-
coming 2/3 of the theoretical speedup for 128 cores. In addition on Figure 3
we can see that RepastHPC results are above the theorical speedup for sim-
ulations with less than 50 cores. As we suspected that these better results
come from cache optimizations in the system, we did more tests to confirm
this hypothesis. The realized tests increase the number of agents and the
load on each agent to saturate the cache and force memory accesses. As the
results for these new tests are under the theorical speedup the hypothesis is
validated.

Figures 4 represents the workload behavior of the two platforms. The in-
ner load of agents (FFT) is here set to 100. The figure shows that RepastHPC
really better reacts to load increasing than Flame. The same behavior has
also been noted for a load of 10 (for 20 000 agents the ratio is 0.92). On the
opposite for a load of 1000 the difference is less noticeable (for 20 000 agents
the ratio is 0.81). Obviously the used model does not use all the power of
Flame as it is limited in term of inter-agent communications. The question
to answer is: is it due to the use of the concept of X-Machines or synchro-
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Figure 4: Workload behavior for simulation using 8 cores

nisation mechanisms in the underlying parallelism? Another possible reason
that could justify this difference is the cost of the synchronisations provided
by Flame when using remote agents and that is not managed in RepastHPC.

6 Conclusion

In this article we have presented a comparison of different parallel multi-agent
platforms. This comparison is performed at two levels, first at a qualitative
level using criteria on the provided support, and second at a quantitative
level, using a reference agent model implementation. The qualitative com-
parison shows the properties of all the studied platforms. The quantitative
part shows an equivalent scalability for both platforms but better perfor-
mance results for the RepasHPC platform.

When implementing our reference model we have noticed that the syn-
chronisation support of the platforms does not provide the same level of
service: the RepastHPC platform does not provide communication support
for remote agents while Flame do it. This support seems to be a key point
in the platform performance.

For this reason, in our future work, we intend to better examine the
efficiency of synchronisation mechanisms in parallel platforms. For example
how are the synchronizations made during an execution and is there a way
to improve synchronization mechanisms in parallel multi-agent systems?
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