2nd

User Conference on ETSIW k‘“{\“‘\\
Advanced Automated Testing ‘.% jy

World Class Standards
September 16-18 2014, Munich, Germany

Model-Based Security Testing
with Test Patterns

Julien BOTELLA (Smartesting)

http://www.rasenproject.eu/
Jurgen GROSSMANN (FOKUS)

Bruno LEGEARD (Smartesting) @A] S ‘ E | N ’ Compositional Risk

' ' Assessment and Securit
Fable_n PEUREUX (Smartesting) DD 2 et duSI yt
Martin SCHNEIDER (FOKUS) .DD esting of Networked Systems
Fredrik SEEHUSEN (SINTEF)

ZFraunhofer @) sINTEF smartesting’

Optimize your Test Center SEVENTH FRAMEWORK
PROGRAMME

Agenda

 Context, motivation and objectives
* Approach for Risk-Based Security Testing
 [llustration of the end-to-end process

e Conclusion and future work

(R]IAIS]E|N]

User Conference on .
m el oot Tt September 16-18 2014, Munich, Germany

Context

+ FP7 RASEN project (2012-2015) [RIAISIEIN _T

Compositional Risk Assessment and Security Testing of Networked Systems

g)
= -
@ SINTEF Zrauholer soparics
rJ software* !QI{QWO rl d UiO ¢ Universitetet i Oslo EV”
\ Y ECTING HEALTHCARE j

— Strengthen European organisations’ ability to conduct security
assessment of large scale networked systems

e taking into account the context in which the system is used, such as
liability, legal, organisational and technical issues,

e through the combination of compliance management security risk
assessment and security testing.

@ A ‘ S ‘ E ‘ N ’ Model-Based Security Testing with Test Patterns 3

mlr e i September 16-18 2014, Munich, Germany
Motivation of the RASEN project

Security risk assessment Transformations Security testing
' Ty ' Y
Security test case
derivation
Security risk . :
cssassment Security testing
Security test result <
aggregation
. v _ v

@ A ‘ S ‘ E | N ’ Model-Based Security Testing with Test Patterns 4

m ol W September 16-18 2014, Munich, Germany
Contents of the presentation

e Security and risk-based testing approach to guide the security testing
using a systematic derivation of test cases from risk assessment results.

Security risk assessment Transformations Security testing

-) 4 N ;- ™
- SECurity 185t case -
derivation
L \ ¥,
2::;:%';?: Security testing
Security test result <
aggregation

e A _ v,

@ A ‘ S ‘ E ‘ N ’ Model-Based Security Testing with Test Patterns 5

m porohi el W September 16-18 2014, Munich, Germany
Security testing: state of the practice

Static Techniques Dynamic Techniques

Intrusive proxies

Manual (Burp suite,
Techniques Webscarab, ...)
Dynamic N
Automated Application Vulnerability
Techniques Security SCan-ners,
Testing Fuzzing tools, ...
(DAST)

@ A [S l E J N ’ Model-Based Security Testing with Test Patterns 6

2nd

User Conference on
Advanced Automated Testing

SAST vs DAST —

ure Interaction Between Compone

SQL Command
Injection Injection

Unrestricted
upload

Porous Defenses

r.~vd coded
creqe tials

Missing Missing
Authentication Authoriz>«on

Untrusted inputs
insecurity
decision

U iecessary Incorrect
Irivileges authorizatiop

= thorizatior.
ate = (s

Broken crypto

(R]IAIS]E|N]

September 16-18 2014, Munich, Germany

y Resource Managemen

Download of
code with no
check

Buffer Path
Overflow Traversal

Untrusted
inclusion

Dangerous
function

SAST

Format String

Integer
Overflow

Missing
encryption

Incorrect
permission
assignment

hashwith no salt

No restriction of .
Use of one way

Model-Based Security Testing with Test Patterns 7

Objectives of the testing approach

* To provide a systematic guidance for DAST
security testing techniques from risk assessment

e To automate test case derivation and execution
using model-based security testing techniques

 To support compositional analysis to manage
large scale networked system in complex
environments

(R]IAIS]E|N]

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

Risk-Based Security Testing process

Risk Assessment Test Models Test Generation Test Execution

_—
~ Fraunhofer
FOKUS

Requirements

Jest Pattern
CGatalogue

SINTEF

- - -—
. A
smartesting 4”""““?3:3;

Behavioral and
Environmental
Test Model

Selected Test
Purposes With
Associated Risk

Security Test
Directives

and Strategies

smarE;;Eg Z Fraunhofer

1.

-,

FOKUS

From Models &
Security Test
Patterns

Applying
Behavioral
Fuzzing

T Z
smartesting 4Fra““t‘g:3;

Tests (UTP)

Adaptation
Layer +
Fuzzino

[RJA[S|EIN]

Model-Based Security Testing with Test Patterns

2nd

User Conference on .
m Achancad Automated Tosting September 16-18 2014, Munich, Germany

RASEN toolchain overview

m
Risk
model

Security Test

Strategies

Selected Test
Patterns with —
associated risk

Security test cases

including
fuzzing directives

JestPurpoese

JUnit test scripts

including
fuzzing directives

-

Behavioral and
environmental

Catalogue

Jiest Pattern Test Model - . F U Z Z | N O
Catalogue

Fuzzing
Strategies

Requirements

@ A [S ’ E J N ’ Model-Based Security Testing with Test Patterns

10

2nd

m probsiry et A September 16-18 2014, Munich, Germany
[} []
[]
Use case: InfoWorld MediPedia

Medipedia is a web service that:

e allows patients to collect and organize all medical information, from
multiple healthcare providers in a single health record,

e provides both public and secured username and password based access
(public and secured information managing patient medical records).

infoworld

CONNECTING HEALTHCARE

=‘MediPedia

The Medical Encyclopedia

@ A ‘ S ’ E ‘ N ’ Model-Based Security Testing with Test Patterns 11

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

1. Risk assessment inputs

Risk Assessment Test Models Test Generation Test Execution

_—
~ Fraunhofer
FOKUS

Requirements

Jest Pattern
CGatalogue

SINTEF

smaré;j?)g Za Fraunhofer

FOKUS

Behavioral and

Environmental 1

-,

Test Model

Selected Test
Purposes With
Associated Risk

Security Test
Directives

and Strategies

smarEZEQ Z Fraunhofer

FOKUS

From Models &
Security Test
Patterns

Applying
Behavioral
Fuzzing

sma;fgs-tjbng Z Fraunhofer

FOKUS

Tests (UTP)

Adaptation
Layer +
Fuzzino

[RJA[S|EIN]

Model-Based Security Testing with Test Patterns

12

User Conference on .
m Achvanced Automated Testing September 16-18 2014, Munich, Germany

Risk identification and prioritization

 Using the CORAS approach to provide test case identification and
prioritization based on the risk analysis:

— Definition of selected test procedures from identified risk
— Prioritization of the test procedures regarding risk assessment results

CIA Impact: High,High,High

TI05: Read application data
[l
TI4: Modify application data
[l

08: Execute unauthorized cod
or commands

I

5

CWE-20: Im pnc-pier Input Validation

AN

CAPEC-66F: SQL Injection
successful

[l

Very little; High: 1

Hacker
CWE-8%: Improper Neutralization of Special Elements used in an 30L Command ('S0L Injection’)

Weakness prevalence: High
Attack Frequency: Often

Ease of detection: Easy
Attacker awareness: High
Likelihood of exploit: Very high

109: Gain privileges / assume
identity
[l

@ A ‘ S ‘ E ‘ N ’ Model-Based Security Testing with Test Patterns 13

UCAAT

File Edit Diagram

User Conference on

Advanced Automated Testing

September 16-18 2014, Munich, Germany

Risk model in CORAS tool

Window Help

= w| ¥ 4 v X0 Tahoma

[d] *sQL Injection &2]

{5k Palette

heaam-

= Connections 40

A7 Harm

A7 Impacts

A7 Initiates

A Leads To

A7 Treats

#" VulnerabilityTa...

= Basic Coras 40

% Threat Scenario
& Direct Asset
% Indirect Asset

#* Human Threat
Accidental

& Human Threat
Deliberate

=] Mon-Human
Threat

A Risk

. Treatment
Scenario

2 Unwanted
Incident

. y

CUE-2 Impropa Input Validation

Vary listle: High: 1

CAPEC-EEF: 0L Injection
succassful
o

CAFEC-£54 S0L Injastion
[Cartain]

CWE-E%: Impropar Mewtralization of Spacial Elsmants ussd in an 0L Command [20L Injection’)

\Waaknass pravalenca: High
Aitack Eraguancy: Oftan

Easz of datastion: Bagy

Attacker awareness: High
Likalihood of explait: Yery high

CI& Impact: High,High High

TIoE: Fima applisation data

Tio: Madify applisaticn datz

[8: Exscuts unauthorized cods

or commands

0% Gain privileges / amums
idantity

E Properties 53 l] T'_l,rpe‘lﬁew|] Tat‘u'iew|

Hronerties are nnt avallahle

5= Outline 53

| type filter text

4 <4 Project risk_identification
<= Threat Diagram CAPEC-66: SQL Injection
< Threat Diagram CAPEC-88: OS5 Command Injection
< Threat Diagram CAPEC-100: Overflow Buffers
< Threat Diagram CAPEC-63: Simple Script Injection
< Threat Diagram CAPEC-225: Exploitation of Authenticatic
< Threat Diagram CAPEC-122: Exploitation of Authorizatior
< Threat Diagram CAPEC-70: Try Common (default) Userne
< Threat Diagram CAPEC-157: Sniffing Attacks
< Threat Diagram CAPEC-232: Exploitation of Privilege/Tru:
< Threat Diagram CAPEC-62: Cross Site Request Forgery (a.
<+ Threat Diagram CAPEC-23: File System Function Injection
<= Threat Diagram CAPEC-184: Software Integrity Attacks
<= Threat Diagram CAPEC-1: Accessing Functionality Not Pr
<= Threat Diagram CAPEC-101: Server Side Include (S51) Inje
<= Threat Diagram CAPEC-113: APl Abuse/Misuse

[RIA[S]E]N]

Model-Based Security Testing with Test Patterns

14

2nd

m porshni el RN September 16-18 2014, Munich, Germany
Link to Security Test Patterns

° Security teSt patterns are typ|Ca | Iy zi\tltEerlr;Name :hmelz;ning:ful nar::e for tfhe pa:er(:, e.g. thi/:ar:\(e of thEe weaknetss.

HH - t tion.

related to VUInerablllty Catalogues (s) e' S 0 awea.ne.ss rom the Common Weakness Enumeration
Weakness A high-level description of the weakness.

— MITRE CWE & CAPEC Description

Solution How the weakness could be revealed manually.
— OWASP Top 10 y
Test Design Test design technique that is able to find the weakness.
. Technique
e Solution : ——— : :
Test Strategies Test strategies specific for a certain test design
— ohe or more test dESlgn technlque technique that shall be a_pplled in order to generate test
. A cases for the weakness in question.
and corresponding strategies, test
. Effort The effort to generate and execute such test cases on a
Effort and Effectlveness scale with the values ‘low’, ‘medium’, and ‘high’-
Effectiveness How effective is the test design technique in finding
° such a weakness (how many test cases are necessary
TeSt Data to find one weakness, how many weaknesses might be
. . . missed).
— instructions for crafting test data —)
. . Description of Informal description of items to be covered by test cases created on basis of a
— references to test data libraries or Test Coverage | pattern,
generators Items
Metrics Appropriate test and coverage metrics. These will be developed in Task T4.3.
This field is omitted within this deliverable.
* Tools
Discussion A short discussion on the pitfalls of applying the pattern and the potential
— refe rences tOOlS that can be used to impact it has on test design in general and on other patterns applicable to that

same context in particular.

generate and execute such test cases

Test Data Actual or references to test data and test data generators.

Tools References to tools appropriate for test case generation and execution.

Generalization of | References to other security test patterns that are specializing this pattern.

References References to OWASP Top 10 weaknesses CWE descriptions, related
CAPEC attack patterns

@ A ‘ S ‘ E ‘ N ’ Model-Based Security Testing with Test Patterns 15

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

2. Test model design

Risk Assessment Test Models Test Generation Test Execution

_—
~ Fraunhofer
FOKUS

smqr@?([;g Z Fraunhofer

- - ?
: “ Fraunhofer
Fokus || Smartesting

- - ?
: “ Fraunhofer
FOKUS smartesnng

FOKUS

Requirements

Behavioral and

Environmental 1

Test Model

From Models &

Tests (UTP)

Security Test
Selected Test Patterns [
Jest Pattern Purposes With Adiptatlon
Catalogue Associated Risk 2y
. Fuzzino
: 2. Applying
Security Test .
Directives Behavioral
and Strategies Fuzzing

SINTEF

(R]IAIS]E|N]

Model-Based Security Testing with Test Patterns

16

Test model and testing directives

e Testing artefacts are composed of:
— A functional and behavioral model of the application under test

— A set of test purposes, selected from risk assessment model
(identification phase), to drive the test generation

— The prioritization of the risk assessment model to apply an
appropriate test coverage

 Smartesting Test Purpose Language is used to represent
Security Test Patterns into a machine-readable language:

— Designed for security means

— Textual language based on regular expressions

— Reasons in term of states to be reached and operations to be
called

(R]IAIS]E|N]

2nd

User Conference on .
m Advanced Automted Tosting September 16-18 2014, Munich, Germany

Behavioral model design using DSML

e Behavioral modeling notation is based on UML metamodel:
— Class diagrams specify the static structure (points of control and observation)
— Object diagrams specify concrete business entities
— State diagrams graphically describe its behavioural characteristics

i PAGES
| webAppStructure Navigable_through = page { MHOME™ : INIT {
dwas_p - all_pages i ACTIONS {
0 l—p -Pages [Cgid : PAGEIDS YLOGIN" (“USERNAME" = "admin" => "ADMIN_LOGGED_IN", "PASSWORD" = “parola-18")
ik -> "ADMIN_LOGGED_IN",
' 0.1 [0.1 *01 1 “LOGIN® (“USERNAME" = “admin2" == "ADMIN_LOGGED_IN", "PASSWORD" = "parola-10")
- Was_ca u .1 -|page h -> "ADMIN_LOGGED_IN",
- was_| t pages output browses / “LOGIN® (“USERNAME" = “homed" == "DOCTOR_LOGGED_IN", "PASSWORD" = "parola-10")
-|current_page -> "DOCTOR_LOGGED_IN",
- Was_cp provides “LOGIN® (“USERNAME" = “test_med2" == "DOCTOR_LOGGED_IN", "PASSWORD" = "parola-18")
. -> "DOCTOR_LOGGED_IN",
- all_actions “LOGIN" (“USERNAME" = “hoppac" == "PATIENT_LOGGED_IN", "PASSWORD" = “parola-18")
has renders * —> "PATIENT_LOGGED_IN",
i “LOGIN® (“USERNAME" = “iliecatalin” == "PATIENT_LOGGED_IN", "PASSWORD" = “parola-18")
cion | | "LDGIN" (“USERNAME" = “iliecatalin’
—> "PATIENT_LOGGED_IN"
i i E'd:ACHON DS *
isDoing 1 = NAVIGATIONS {
et “GOTO_REGISTER"
- thres) - - oo “
1 - ongoingaction - action ||:|,,1 1 > "REGISTER
— }
| Threat Il inputs | takes_as_input “ADMIN_LOGGED_IN" {
- all_Iinputs) - NAVIGATIONS {
“LOGOUT"
g2, checkss () | Ll Data , > "HOME"
482, inject¥ss () - all_outputi= g : PARAMETER_IDS }
e — =5 = “DOCTOR_LOGGED_IN" {
ACTIONS {
“SELECT_PATIENT" ("NAME" = “ILIE" => “DOCTOR_PATIENT_PAGE", "FIRST_NAME" = “Catalin" == "D0(
“DOCTOR_PATIENT_PAGE")
. -> "DOCTOR_PATIENT_PAGE"
G ;
enerlc NAVIGATIONS {
“LOGOUT"

Model-Based Security Testing with Test Patterns 18

2nd

m oy e September 16-18 2014, Munich, Germany
State di f DSML

=i B NP iQeigei v o e
Lucida Grande +|| 8 v |—>v v Jv B[|-BB. |'ah.v of v oy | H» B b~ | 125% v
(Q Quick Access) | = |E<=3',Modeling [[eg5martesting Certifyit | &)ava [Ressource
r[\j Project Explorer 23\ = <'===(> }:9 =S] %4 RasenModel.emx Ii SUT_Statemachine &2 \ = 0
¥i=Medipedia B P, 4
» (*?Diagrams initial [DOCTOR_PATIENT_PAGE | W
¥ (2Models
E= RasenModel
vaClasses
» £ Associations
» 5 Events Ve
> QAction
> E Data
= Page b 4
v E SUT REGISTER_GOTO_LO... DOCTOR|LOGGED IN SELECT PATIENT D...
» 3 initPage HOME_LOGIN_DOCTOR_LOGGED_IN...
» Eg webAppStructure HOME_GOTO_REGISTER_RECIS... HOME_LOGIN_DOCTOR_LOGGED_IN_...
» & COTO_LOGIN () [St Iy Yl ek OR_LOGGED_IN_LOGOUT H...
¥ 45 GOTO_REGISTER () BN AR S 0RO i 2 HOME_LOGIN_ADMIN_LOGCED_IN_1[Gubrd-.
P%LOG"‘] 0 FA_TIEN'I:LOGGEDJNﬁLO... HOME = ENTLLOLGED I = = = = N 1[Copr
» &3 LOGOUT ()
b 43 SELECT_PATIENT () R HO! OGGED.IN_2[Guard:
&2 «setup» setup () = Y s .Y Za N 7 ™Y
%xteardown» teardown () ‘ . REGISTER ‘ (o PATIENT_LOGGED_IN) ADMIN_LOGGED_IN . DOCTOR_LOGGED_IN
v (3SUT \ / \ \
SUT_Statemachine _ . > ~ >
v (1) Region
» E9ADMIN_LOGGED_IN B3 Certifylt Console E Properties [a Tag browser 23 I@ Simulator =
» CODOCTOR_LOCCGED_IN
» CODOCTOR_PATIENT_PAGE 2 Project 'Medipedia'
» G HOME vy = o
= = Filt @ &
» GIPATIENT_LOGGED_IN = &5 T Te =15
» GIREGISTER ¥ iiads
® initial v EAll tags
¥ = VULNERABILITIES
» @ ADMIN_LOGGED_IN_LOGOUT_H v & Suite .)) o
» @ DOCTOR_LOGGED_IN_LOGOUT ¢ CategoryTestPurpose: CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)
> @DOCTOR_LOGCED_I N_SELECT |; ¢ CategoryTestPurpose: CWE-20: Improper Input Validation
» @DOCTOR_PATIENT_PXGE LOGE'}I ¢ CategoryTestPurpose: CWE-78: Improper Neutralization of Special Elements used in an OS Command ('0S Command Inje
» @ HOME G(_)TO REGI_STER _RF_GIST ¢ CategoryTestPurpose: CWE-697: Insufficient Comparison
» @ HOME_LOG\N_ADMIN LBGGED ¢ CategoryTestPurpose: CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")
» P HOM E_LOG\N_ADMIN_LOGGED_ ¢ CategoryTestPurpose: CWE-680: Integer Overflow to Buffer Overflow
> @ HOME_LOG\N_DOCTO_R LOGCE_[¢ CategoryTestPurpose: CWE-131: Incorrect Calculation of Buffer Size

@ A [S ’ E | N ’ Model-Based Security Testing with Test Patterns 19

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

Test Purpose derivation

Pattern Name

SQL Injection

CWE-ID(s)

CWE-89

Weakness
Description

The software construds all or part of an SQL command using extemally-
influenced |rp|.|tfmm an upsllmm component, but it does not neutralize or
incomectly 5 special el its that could modify the mtended SQL
command when rtls sent to a downstream component Eror! Reference
source not found.

Solution

Based on attack pattern CAPEC-66 Bror! Reference source not found.

1. Use the application, dient or web browser to nject SQL construcis
input through text fields or through HTTP GET parameters.

2 Use a possibly modified cient application or web application debugging
ool such to submit SQL consiruds for submitted values or to modify
HTTP POST parameters, hidden fields, non-freeform fields, etc.

3. Check for eiror messages, delays, disclosed values in the client
application and newimodified/deleted values in the database.

Automatic derivation from Test Pattern to Test Purpose:

* Linked to model by using keywords
* Testing directives inherited from Test Patterns

Test Design Data fuzzing
Technique Patiern-based testing

Test Strategies | SQL Injection

Effort Low to medium: can be highly automated using fuzzing

techniques or SQL injection dictionanes.

Effectiveness Medium Emror! Reference source not found. to high,
depending on detection capabiiies by access to the

affected database and to error messages

Description of
Test Coverage
ltems

Fundionalily that mvolves userinput, e g dialogs, URLs of a web
application, that might be used in a database query

User input hields

501 mjection payloads

Names of tables and rows of the database schema

Values of exisling records

£} *RasenModelTestSuite 53 l = 8
G S
PAGES Type |List of Literals v
PARAMS
ACTIONS LIT_USERNAME or LIT_PASSWORD or LIT_NAME or LIT_FIRST_NAME or LIT_CNP

SQLI_VULN_PARAMETERS
PAGES_WITH_INOUTS

+|[=

SQLlnjection

i Keyword defined correctly.

Tags |@VUL:SQL:Injection (CWE-89)|

for_each instance $param from "Data.allinstances()- >select(d:Data|not{d.action.ocllsUndefined()))" on_instance sut,

= Fuzzing ibrary FuzzinoEmor! Reference source not found.

Testing Tools

e Fuzzing framework SulleyEmror! Reference sowurce not found.
s SgmapEmor! Reference source not found.

Generalization of

[RIA[S|E|N]

Ermor! Reference source not found

Model-Based Security Testing with Test Patterns

Discussion SQL mjection is a task that could be rather trivial but also very complex. use any_operation any_number_of_times to_reach
This depends on several factors. For nstance, error messages resulling "SUT.allinstances()->any(true).webAppStructure.ongoingAction.all_inputs->exists(d:Data|d=self)" on_instance $Sparam then
from incorrect SQL construds caused by SQL mjection are very helpful n use threat.injectSQLi($param) then
deciding whether SQL injection is generally possible. use any_operation any_number_of_times to_reach
In order to detect whether table data c.'m be m()(i‘ﬁed, it is helpful to have "self.webAppStructure.ongoingAction.ocllsUndefined()" on_instance sut then
knowledge of the database {different sy have use threat.checkBlindSQLI()
Iittle differences in SQL syntax) and the (htabase schema {modifying
existing records may require knowledge in which tables they are stored).
If SQL injection is ible, the extent of SQL injection can be assessed —- : 3
trying to modify m‘mﬁavmm requires knowledge (Ifa(isﬁngvalu(!_‘;b?n & [F|LE i Test Purpose defined correctly.
the database tables. This enables to determine whether exising database
entries can be read, modified or deleted. Overview | Test fixtures | Behavioral test objectives Business scenarios Test scenarios | Test Purposes
Test Data = 500 Injection Cheal SheetEmorn! Ry not found.

20

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

3. Security test generation

Risk Assessment Test Models Test Generation Test Execution

_—
~ Fraunhofer
FOKUS

Requirements

Jest Pattern
CGatalogue

SINTEF

smar(;;j?)g Za Fraunhofer

FOKUS

Behavioral and

Environmental 1

-,

Test Model

Selected Test
Purposes With
Associated Risk

Security Test
Directives

and Strategies

smarE;;Eg Z Fraunhofer

FOKUS

From Models &
Security Test
Patterns

Applying
Behavioral
Fuzzing

smarfgg-tj.ng Z Fraunhofer

FOKUS

Tests (UTP)

Adaptation
Layer +
Fuzzino

[RJA[S|EIN]

Model-Based Security Testing with Test Patterns

21

Test generation strategies

Test cases are automatically generated using Smartesting Certifylt
by composing behavioral models and test purposes:

e For one Test Purpose, several (or many) test cases by:
e Applying usual Test Purpose coverage criteria
 Applying behavioral fuzzing strategy given from Test Patterns

* Traceability management from security requirements to
generated tests is build-in

Result: a suite of abstract security test cases

(R]IAIS]E|N]

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

Test generation results using Certifylt

‘@00

Smartesting Certifylt 6.2.0 - RasenMedipedia [/Users/yakaldir/Desktop/Medipedia RASEN/workspaceRasen/RasenMedipedia,/SCit]

Project Preferences Help

BEEI® - (= | B | @ junit RASEN -
5 Stories ',) Tests |, £ Requirements ',

O\ Search stories [SQL 08«76
Artifacts | Status | Tests |
=, |E & Project - 5 (4]
= & Hb RasenModelTestSuite - 5
= 59 sQlinjection_10 v 1
£ <none> ¥ 1
i <nonex « 1
N SQLInjection_10 (bb-al-03)
= T sQuinjection_11 v 1
£ <none> v 1
 <none> @ 1
n SQLInjection_11 (bb-4f-03)
= 59 sQulnjection_7 v 1
£ <none> v 1
i <nonex ¥ 1
n SQLInjection_7 (bb-72-03)
= T sQuinjection_8 v 1
L <none> v 1
 <none> @ 1
n SQLInjection_8 (bb-ch-03)
= 59 sQlnjection_9 v 1
£ <none> v 1
i <nonex ¥ 1
n SQLInjection_9 (bb-2c-03)

Test detail
Steps
. | - Default model instance
- Initialized model instance
- SUL.setup()

= sut.LOGIN(LIT_HOMED, LIT_PAROLA_10)
was.hasOngoingAction() = false
was.set0OngoingAction(LIT_LOGIN)
~-was.setCurrentPage(LIT_DOCTOR_LOGGED_IN)
-was.finalize Action()

=-was.hasOngoingAction() = true
= sut.SELECT_PATIENT(LIT_ILIE, LIT_ CATALIN. LIT 1701102033100)

= 1: Console

was.hasOngoingAction() = fals| [Classes [StateMachine R InitialState - Pages fig *SQLInj 7 Diagram_sqlinj &3
was.setOngoingAction(LIT_SEL || TeserTester | [swtMedipedia | | [theeatThreat | | [§] webAppStructureWebAggStructure |
“was.setCurrentPage(LIT_DOCT
o X [£] tmeeraction
-threat.injectSQLI(LIT_CNP_PARAM
-was.hasOngoingAction() = trul o o B e @ o
-was.finalizeAction() % Tester:Tester Q sutMedipedia Q threat:Threat Q webAppStructure:WebAgnStructure
was.hasOngoingAction() = tru | o | |
-~ threat.checkBlind SQLI() .
- sut.teardown() | | |
| z:injeLksqL | |
Point of v | | |
av
Tags of the suite reached by the test (bold f | | 3: finalizeAction |
VuL: | |
SQL:Injection
| 4: checkSQL
|

Reached tags / Activated tags / Paramet

(R]IAIS]E|N]

Model-Based Security Testing with Test Patterns

|

23

2nd

User Conference on
Advanced Automated Testing

September 16-18 2014, Munich, Germany

4. Test concretization for execution

Risk Assessment Test Models Test Generation Test Execution

_—
~ Fraunhofer
FOKUS

Requirements

Jest Pattern
CGatalogue

SINTEF

smar(;;j?)g Za Fraunhofer

FOKUS

Behavioral and

Environmental 1

-,

Test Model

Selected Test
Purposes With
Associated Risk

Security Test
Directives

and Strategies

smarE;;Eg Z Fraunhofer

FOKUS

From Models &
Security Test
Patterns

Applying
Behavioral
Fuzzing

smarfgg-tj.ng Z Fraunhofer

FOKUS

Test (UTP)

Adaptation
Layer +
Fuzzino

[RJA[S|EIN]

Model-Based Security Testing with Test Patterns

24

w rcman
Generation of executable test scripts

JUnit test scripts are automatically generated by Certifylt using an
adaptation layer concretizing abstract data into concrete values:

 For one abstract test case, several (or many) executable

test cases by:
 Using a set of selected test data given from Test Patterns

e Applying data fuzzing strategy given from Test Patterns

* Traceability management from security requirements to
executable tests is build-in

Result: a set of executable security test scripts

(R]IAIS]E|N]

User Conference on .
m Advanced Automated Testing September 16-18 2014, Munich, Germany

Tests Execution in JUnit environment

a SQlinjection_10__bb_al_03_.java - [Execution] - Execution - [~/Desktop/Medipedia RASEN /workspaceRasen [Execution]
[3 Execution [src [E] Smartesting] RasenMedipedia = [£] RasenModelTestSuite (@ Multistep_XS5_6__bb_91_03_ 1 SQLinjection_10__bb_al_03_ ¥
- Project - B =% B+ @SQLInjectlon 10__bb_al 03_.java GAdapterlmplementatlon.]ava
v [E5Execution | @RunWith(Parameterized.cl
» [M.idea y ublic class SQLInjection_ 10 bb_al 83_ {
v Ellibs
v [Jfuzzino ;
» [l Fuzzino 0.3.0.0.jar 24 priva AdapterImplementation a

1 jdom2 = ;
[junit SOLImect:Lon 1¢__bb_al @3_(f String vector) {

1 4 w AdapterImplementation(new TypesAdapterImplementation());
[selenium-2.42.1 2 " = vector:

[resources

Blsrc @Parameters
: @Paramete
Ede.[raunhofer.fokus‘fuzzmg 32 public static Collection<Object[]> data() { return Injector.getParameters(VectorCreator.50L
v Smartesting.RasenMedipedia
v [El1RasenModelTestSuite @Before
@ & SQLinjection_7__bb_72_03_ L
(, B SQlinjection_8__bb_ch_03_ @Test
& & SQlinjection_9_ bb_2c_03_ p ic void testSQLInjection 18 bb al 83 () throws Exception {
G & SQlnjection 10_bb al 03 43 -":asen:ogetgtassesau&uﬁ?{sm.. T L?GINI&USERNP:EE};‘ I . L[}GINTPASSNURD. IT_PAROLA_18);
’ o 14 adapter.RasenModelClassesWebAppStructurefinalizeAction(WebAppStructure.was);
; 4
G’f" Klnjection 11_bb.af03. " ; .RasenMode1ClassesSUTSELECT_PATIENT(SUT.sut, SELECT_PATIENT_NAME.LIT ILIE, SELECT_PATIENT_FIRS]
© & TypesAdapterimplementation 45 2 er.RasenModelClassesThreatinjectSQLi(Threat. threat, Data.LI RAM, vector);
o'é: TypesDefinition adapte Rasen'\‘lodeLCLasses'vJebAppEitruc‘uref:l.naleeAcnon{NebAppStructure
©® & Adapterimplementation L! sdapter.RasenModelClassesThreatcheckBlindSQLi(Threat. threat);

String

s103l0ug uanel

Japuewiuo) il

i setUp() adapter.RasenModelClassesSUTsetup(SUT.

Pling Uy &

© & Adapterinterface

b | T = s 3

® v @®s5Qlinjection_10_bb_al_03_
> @[0]
r @01
v @2
@ test50Linjection_10__bb_al_03_[2] (Smartesting.RasenMedipedia.RasenMode TestSuite.50LInjection 10__bb_al 03.)
® 3]
@ tes1SQLInjection_10__bb_al_03_[3] (
D4
D8]
(C10)]
(® testSOLInjection_10__bb_al _03_[6] (
G

4: Run % 6: TODO +-| Terminal Event Log

7: Structure

o

W 2: Favorites

=

No occurrences found Il LF+ UTF-B+ %

EE Model-Based Security Testing with Test Patterns

Conclusion and future work

Extended security test patterns for risk-based test case generation

Formalization of security test patterns into test purpose language to drive
the risk-based test generation

Risk-based testing approach combining RASEN partners risk assessment
and testing techniques:

— Risk identification and prioritization using CORAS method

— Import of risk assessment results from CORAS tool into Certifylt
— Test purpose generation method (Certfylt)

— Behavioral and data fuzzing strategies (Fuzzino)

Definition of more accurate testing strategies regarding risk prioritization
Extension of security test patterns and related test purposes
Improvements of the tool integration (especially Test Purpose / fuzzing)

Deeper use case evaluation, especially to validate the approach regarding
large scale systems

(R]IAIS]E|N]

September 16-18 2014, Munich, Germany

Thank you for your attention!

[RIA[S|E|N]

Questions and Comments?

http://www.rasenproject.eu/

@A S/E[N Compositional Risk

QD Assessment and Security
. QD Testing of Networked Systems

The project can also be followed on Twitter & LinkedIn:
@RASENProject
H#RASENProject
http://www.linkedin.com/groups?home=8&gid=7429037

Model-Based Security Testing with Test Patterns 28

	Model-Based Security Testing with Test Patterns
	Agenda
	Context
	Motivation of the RASEN project
	Contents of the presentation
	Security testing: state of the practice
	SAST vs DAST – Top 25 / 2011
	Objectives of the testing approach
	Risk-Based Security Testing process
	RASEN toolchain overview
	Use case: InfoWorld MediPedia
	1. Risk assessment inputs
	Risk identification and prioritization
	Risk model in CORAS tool
	Link to Security Test Patterns
	2. Test model design
	Test model and testing directives
	Behavioral model design using DSML
	State diagram from DSML
	Test Purpose derivation
	3. Security test generation
	Test generation strategies
	Test generation results using CertifyIt
	4. Test concretization for execution
	Generation of executable test scripts
	Tests Execution in JUnit environment
	Conclusion and future work
	Diapositive numéro 28

