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Abstract 

Phantoms are 3-dimensional (3D) numerical representations of the contours of organs in the 

human body. The quality of the dosimetric reports established when accidental 

overexposures to radiation occur is highly dependent on the phantom’s reliability with 

respect to the subject. EquiVox is a Case-Based Reasoning platform which proposes an 

interpolation of the 3D Lung Contours (3DLC) of subjects during its adaptation phase. This 

interpolation is conducted by an Artificial Neural Network (ANN) trained to learn how to 

interpolate the 3DLC of a Learning Set (LS). ANN is a well-suited tool when known results are 

numerous. Since the cardinality of our learning set is restrained, the imperfections of each 

3DLC have a great impact on interpolations. Thus, we explored the possibility of ignoring 

some of the 3DLC of LS via implementation of a new learning algorithm which associated 

Combination Vectors (CV) to LS. The results proved that this method could optimise 

interpolation accuracy. Furthermore, this study highlights the fact that some of the 3DLC 

were harmful for some interpolations whereas they increased the accuracy of others.  
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I – Introduction 

In the case of accidental exposure to radiation, a dosimetry evaluation must be established as soon 

as possible for each subject. In most cases, this evaluation is based on available 3D voxel phantoms, 

numerical models created from medical images to represent the subject’s organs with maximum 

realism. Examples of voxel phantoms for dosimetric assessment following internal contamination or 

external exposure can be found (1) (2). However, even when medical images are available, the 

subject’s specific phantom is not always accessible since its construction is delicate. Moreover, 

medical images are avoided so as to prevent any additional exposure to radiation. Thus, existing 

models are used even if their characteristics differ from the subject’s biomedical data. Dosimetry 

assessment accuracy and the resulting decontaminating medical actions are nevertheless highly 

dependent on the similarity between phantom and subject. Hence, the actual work aims at assisting 

the physician in choosing the fittest phantom from the existing ones available. 

EquiVox is a platform based on Case-Based Reasoning (CBR) which is a problem solving method that 

uses similar solutions from similar past problems in order to solve new problems (3). CBR is a tool for 

retrieving, adapting, revising and storing experiences, and many adaptation strategies can be found 



in the literature. Adaptation by Generalisation/Specialisation requires a hierarchical organisation of 

the CBR source cases according to generalisation/specialisation relations. Some characteristics are 

hidden in the generalisation process whereas special ones are added to the general case during the 

specialisation process. Adaptation using Adaptation Rules (4) consists of computing a solution for a 

target case applying a function which takes as its parameters the target case, a source case that 

presents some similarities and its solution. Differential Adaption (5) is based on the evaluation of the 

variations between the source and target cases: an approximate solution of the target case is 

computed by applying the variations between the two cases to the solution for the source case under 

consideration. Conservative Adaptation (6) is based on the Revision Theory which considers 

knowledge updates. This kind of adaptation consists of minimising the modifications to be applied to 

the knowledge. A cost for the possible adaptations must be computed. The EquiVox adaptation 

phase is based on rules known from experience. After having retrieved the phantom the most similar 

to the subject’s thorax (7) (8), EquiVox proposes an original tool based on Artificial Neural Networks 

(ANN) (9) to create the 3D contour of the subject’s lungs (10) during the CBR adaptation phase (11). 

The present study goes a step further since it introduces a new concept capable of determining the 

best subsets of phantoms for the construction of Contours in 3 Dimensions of the Lungs (3DLC) of a 

given subject with the greatest accuracy. 

II – Requirements, hypothesis and method 

A large number of phantoms can be found in the literature (12) (13) (14) (15) (16) (17) (18), and 

radiation protection is also divided into numerous sub-domains. Indeed, some phantoms are 

commonly used by experts for external radiotherapy, while different ones are used by other 

physicians for evaluation of internal doses received. In fact, each expert has his own set of 10 to 20 

phantoms. When a physician’s usual phantoms are all too distant from the subject, the expert must 

create a new one. Using interactive 3D dilatations and contractions, physicians modify the contours 

of the 3D organs of their phantoms until they correspond to those of the subject. They then put them 

together and obtain the final phantom on which the computations will be based (19). Thus, 

adaptation rules are guided by the experience and knowledge of the experts. EquiVox is able to 

produce the same transformation process automatically, without human intervention, using an ANN 

(11). ANN is an interpolation tool which requires a training phase. For the 3DLC construction of 

EquiVox, the training set was the entire set of known 3DLC (20).  

Nevertheless, we assumed that if the subject is a baby, for example, it is relevant to learn how to 

create 3DLC using an ANN trained on a set of known 3DLC of other babies and to exclude adult ones. 

Thus, in this study we propose to optimise the subjects’ 3DLC construction, taking into account their 

specific characteristics after the ANN training. We introduced a vector to express whether or not it 

was relevant to include each known 3DLC in the learning set of subject characteristics: the 

Combination Vector for Interpolation Optimisation (CVIO). 

II – A – The EquiVox platform 

Figure 1 presents the technologies that were used and the data flows over the EquiVox architecture. 

All the phantoms are stored in Rhino3D files (21) and their characteristics kept in a database (data 

flow #0 in Figure 1). The lung contours are extracted (data flow #1) and then transmitted to the ANN 

training module (data flow #2) which creates the ANN (data flow #3). When a new phantom is 

required, the target case description is transmitted to the retrieval module (data flow #4) which 

determines the similitude and confidence indices taking into account the source case (data flow #5). 



If required by the experts, the lung adaptation module sends the characteristics of the source cases 

(data flow #6) to the ANN interpolation module (data flow #7) which loads the trained ANN (data 

flow #8) and the coordinates of the lung contour in question (data flow #9) in order to create 

interpolated contours suited to the target case (data flow #10). 

 

Figure 1. Data flows over EquiVox Architecture. 

II – A – 1 – Case modelisation 

When radiation overexposure occurs, a dosimetric report must be established for all subjects. For 

each one, the experts’ first task is to choose the most accurate 3D phantom considering the 

information known about the subject. Each phantom has its own characteristics and is chosen by 

comparing subjects’ available measurements and information to their characteristics. The phantom is 

thus chosen by analogy. 

We exhausted the list of useful characteristics furnished by the physicians of the French Institute of 

Radiation and Protection (IRSN). 

Thus, in EquiVox, a problem is described as a set of r descriptors {d1, … , dr}. 

Each expert has his own set of n phantoms: SP = {P1,  , … , Pn}.  

Each Pi is the solution part of a case and represents the contours of m organs: Pi={Pi
1
, … , Pi

m
}.  



Each organ O is a set of q points joined by a Delaunay mesh (22): Pi
o
={C1

i,o
, … , Cq

i,o
} where Cj

i,o
 denotes 

the 3D coordinates of point j of organ O of phantom Pi. O ∈ {lung, heart, liver, sternum, ribs, 

scapulae, spine, breasts, skin, oesophagus and thorax}. 

Finally, a case i is: i = { {d1
i
 , … , dr

i
}, Pi}. We will note the target case as t. 

II – A – 2 – Adaptation of 3DLC 

Once a matching case is retrieved (7), the expert can decide either to use the the most similar 

source-case phantom, or to require the EquiVox platform to generate a new phantom, adapting the 

source cases to the target one. Indeed, if some available phantom measurements are too different 

from those of the subject, the expert may decide to adapt one of them or even to create a new 

phantom which may be reused for other problems later. Thus, when the expert requires the 

generation of a new phantom, the contours of the m organs are expected.  

Actually, the first organs that experts create in such a personalised process are the lungs. The 

positions and volumes of the other organs are deduced from those of the lungs. Thus, we first 

considered the adaptation of 3DLC. 

II – A – 2 – a – Solution space modelisation for 3DLC 

As previously presented, the 3DLC of phantom Pi are defined in 3D by a set of q points joined by a 

Delaunay mesh: Pi
lung

 = {C1
i,lung

 , … , Cq
i,lung

} where Ck
i,lung

 denotes the 3D coordinates of point k: Ck
i,lung

 = 

{xk
i,lung

 , yk
i,lung

 , zk
i,lung

}. For each 3DLC, q is equal to 26 723 points. The points were plotted in the same 

order and in the same Cartesian coordinate system. Thus, the task of the lung contour-adaptation 

phase of EquiVox consists of interpolating the 3D coordinates of the points of t in the same order and 

in the same Cartesian coordinate system. A Delaunay mesh can then be applied so as to create the 

contours of the lungs of t. 

II – A – 2 – b – Adaptation rules 

In fact, lung contours and volumes depend mostly on the height of the subject. Indeed, for the lungs, 

I. Clairand et al. (23) proved that the height of a person prevailed for their geometry and volume.  

Thus, when experts decide to create the 3DLC of a subject, they choose the one from the stored 

phantom whose height is the closest without taking into account any other characteristic. The 

adaptations are usually done manually, applying mathematical transformations (2D and 3D 

contractions and dilations (19)). These transformations are carried out through 3D modelling tools 

(such as Rhinoceros (21) or CATIA (24)).  

II – A – 2 – c – Method 

Since the mesh and the number of points are not variable, the adaptation must be carried out on the 

point coordinates of the lung contours, point by point. Since no formal equation exists, we had to 

discover through a learning method the rules that transform the coordinates of the points on one 

lung contour into other coordinates.  

Consequently, data-driven methods using inductive reasoning are the most suitable approaches; 

ANN and Fuzzy-ANN respond to these requirements. We chose ANN as the tool for this step, 

assuming this could serve as the basis for further work with Fuzzy-ANN if the first results were not 

convincing.  



We explored the possibility of using a multi-layer perceptron trained with a backpropagation-based 

method. Other interpolation methods were tested: polynomial and Spline ones (cf Subsection II-A-2-

e). 

II – A – 2 – d – ANN inputs, outputs and topology 

To interpolate the 3DLC, the patient’s height must be known. Actually, this is one of the descriptors 

of the EquiVox target and source cases. Let us note hi the descriptor corresponding to the height of 

the case i and ht, the height of the target case t. 

An ANN with 9 inputs and 3 outputs was designed. Two phantoms were considered: 

• The source case inf for which hinf is inferior and the closest to ht; 

• The source case sup for which hsup is superior and the closest to ht. 

The trained ANN interpolates the 3 coordinates of each point of the lung contours separately. Thus, 

the 9 inputs permitting interpolation of the coordinates Ck
lung

 of point k of t are: 

• The 3 coordinates of point k of the lung contours of inf: Ck
inf,lung

 = {xk
inf,lung

 , yk
inf,lung

 , zk
inf,lung

}; 

• The height of inf: hinf; 

• The 3 coordinates of point k of the lung contours of sup: Ck
sup,lung

 ={xk
sup,lung

 , yk
sup,lung

 , zk
sup,lung

}; 

• The height of sup: hsup; 

• The height of the target case: ht. 

The designed ANN is perceptron having one hidden layer. Ten neurons are on the hidden layer with a 

sigmoid activation function. The activation function of the neurons belonging to the output layer is 

linear.  

Such topologies were also chosen and successfully tested on the NEMOSIS platform (25) for a similar 

issue: considering a point inside the patient’s lung, at both the initial and final position (maximum 

and minimum respiration respectively), a similar ANN interpolated the positions of the point during 

an entire breathing cycle with an error inferior to the spatial resolution of the medical images on 

which the point had been plotted. For NEMOSIS, the number of neurons on the hidden layer was 

optimised using a validation set in addition to the learning set used for the learning step. In the case 

of EquiVox, regarding the small number of 3DLC (12 3DLC), we decided not to consider a validation 

set. Thus, the learning set was composed of 9 3DLC, while the 3 remaining 3DLC belonged to the test 

set. We assumed that such a topology would deliver sufficiently accurate results. Nevertheless, such 

a strategy to optimise the number of neurons on the hidden layer would have to be implemented in 

later work. 



 

Figure 2. Available 3DLC. 

In Figure 2, the 9 heights of the 3DLC P1 to P9 used for the training are reported on the axis. The 3 

heights of the 3 new 3DLC T1, T2 and T3 are also reported on the same axis. All the thorax organs are 

represented in P1 to P9 whereas only the lungs were drawn in T1, T2 and T3. 

II – A – 2 – e – ANN learning set and training step 

Training ends when the difference between the expected and the obtained values is minimised. W. 

Hsieh (26) distinguished four algorithms based on the backpropagation method: 

• The BFGS method (Broyden-Fletcher-Goldfarb-Shanno) is a quasi-Newton method, which 

approximates the value of the Hessian matrix of the second derivatives of the function to be 

minimised; 

• The L-BFGS method (Limited memory – BFGS) is an adaptation of the BFGS method which 

optimises the computational resources to use. Both of these methods must be coupled with 

a Wolfe linear search in order to determine an optimal step size between two iterations; 

• The Rprop (Resistant backpropagation) method proposes a first order algorithm, but its 

complexity increases linearly with network topology; 

• The iRpropPlus method is one of the fastest and also one of the most accurate algorithms 

(27). This evolution of the Rprop method allows some synaptic weight updates to be 

cancelled in the neural network if a negative effect is observed. 

 Phantom height Required 
precision 

 Best Learning 
method 

ANN 
interpolations 

1783.1 1E-006 BFGS 
1807.1 1E-006 BFGS 
1830.3 1E-006 BFGS 

Table 1. ANN configuration (learning method and required precision) obtaining the best preliminary results. 

All of these methods were previously implemented and tested in the EquiVox adaptation phase of 

3DLC. Different required precisions were also tested. The coordinates of 10 points were randomly 

extracted from the 3DLC of P1 to P9 and a cross validation was performed. Table 1 shows that the 

algorithm giving the best interpolations is that which used BFGS as backpropagation method and that 

obtained a precision equal to 10
-6

.  Thus, the chosen ANN configuration has been compared to a 

polynomial (Newton, of degree 2) and a Spline interpolation method. The Newton interpolation 

function proposed by J. Ponce and R. Brette (28) and the Spline one proposed by Scilab (29) were 



implemented with Scilab 5.3.2. For each method, a cross-validation for the same 10 points was 

undertaken using the same 3DLC of P1 to P9. Figure 3 presents the mean distances between 

interpolated and expected coordinates. This figure shows that the polynomial interpolation produced 

the greatest errors among the three tested interpolations. A factor nearly equal to 10 can be 

observed between the polynomial interpolation and that of the Spline or the ANN. The Spline and 

the ANN interpolations gave closer errors. Nevertheless, for all the tested cases, the ANN 

interpolation errors were inferior to the Spline ones 6 times and were equal only once. These results 

prove the superiority of the ANN interpolations over the other methods since the ANN interpolation 

gave a more accurate result in all the tested cases.  

 

Figure 3. Mean distances obtained between interpolated and expected coordinates for 10 points and 

3 interpolation algorithms. 

II – B – The Combination Vector for Interpolation Optimisation 

II – B – 1 – Previous performance of the ANN interpolation of EquiVox 

Tests were previously performed with the entire Learning Set LS={P1, …, P9} to interpolate the Test 

Set TS = {T1,…, T3}. The heights of each Ti has been carefully chosen to test all the possible cases: as 

shown in Figure 2, the height of T1 is just above the smaller stored one (P1), the third one (T3) is just 

below the higher stored one (P9), and the second (T2) is in the middle of the stored panel of heights. 

Since the 3DLC alone were designed for the 3DLC of TS, these ones were used only for these last tests 

and not stored in the EquiVox case-base, nor were they used during the ANN learning. In addition, 

the same manual creation process was followed for all 3LDC of LS and TS.  

Value of the descriptor “height” 

of the target case (ht) [mm] 

Mean error [mm]  Std error [mm] 

1650 1.65 0.53 

1790 0.55 0.18 

1850 0.80 0.37 

Table 2. Mean error between ANN and expected outputs associated with target case height. 



Table 2 shows the mean distances observed between the interpolated and expected points for each 

ht. The mean distances vary from 0.55 mm to 1.65 mm. The calculations of dosimetric reports are 

usually computed using a voxelised phantom. The commonly used voxel dimensions are 1.8 mm by 

1.8 mm by 4.8 mm (19) (20). The largest mean error is equal to 1.65 mm (inferior to the spatial 

resolution of commonly used phantoms). Thus, all the 3DLC generated by this ANN can be used to 

establish dosimetric reports.  

II – B – 2 – Optimisation of the ANN learning set 

Nevertheless, this adaptation strategy is based on 3DLC that may contain errors in comparison with 

the expected lung contours of a real subject: these contours are already representations of reality 

with uncertainties. Thus, biases might be introduced by one or more incorrectly designed 3DLC. The 

ANN implemented in the EquiVox adaptation phase for 3DLC may reduce the impact of these errors 

since an ANN is an interpolation tool, but the purpose of this study is to verify the accuracy of LS to 

construct one particular 3DLC. We explored the possibility that a sub-set of LS could give more 

accurate results.  

We introduced u vectors Vi to stipulate weather each 3DLC was used or excluded from LS:  

 

We also introduced two functions, for the local c()  and global C() combinations respectively and 

defined as:  

  

 

II – B – 3 - Cardinality 

As explained in Sub-section II-A-2-d, not all the possible learning sets obtained with C() allowed the 

interpolation of the 3DLC of TS. Let’s note Cardi the cardinality of  which allows the 

construction of , and L the cardinality of LS. 

Proposition  

 

. 

Proof 

On the one hand, in order to interpolate , a minimum of 3 3DLC must be included in the learning 

set, and a minimum of one 3DLC in   and one in 

 . 



• There are vectors in V; 

• There are  possibilities such that fewer than 3 3DLC are chosen among LS; 

• ; 

• ; 

• There are  possibilities such that exactly 3 to j 3DLC of  are chosen and no . 

• There are  possibilities such that exactly 3 to (L-j) 3DLC are chosen of  are 

chosen and no . 

Consequently,  

 

. 

II – B – 4 – New ANN learning algorithm 

A new algorithm for the learning phase was also implemented. Indeed, in the first algorithm 

, the backpropagation ended when the global mean square error between expected and 

computed coordinates considering all the points of all the 3DLC was inferior to  (cf. sub-section 

II-A-2-e). Thus, one mean square error was found for the entire learning set in . 

In the new version of the learning phase, the algorithm  computed the mean square error 

between expected and computed coordinates considering all the points of each 3DLC. Thus, in this 

new version, if the vector was , there were  mean square errors, and the 

backpropagation algorithm was applied until each error was inferior to . 

III – Results 

The results presented in Figures 4, 5 and 6 show the accuracy obtained according to the Combination 

Vector (CV). In these figures, the red lines are the accuracies obtained using  

and , and the green lines the accuracies obtained using  and . Only accuracies 

inferior to those obtained with  and  are reported. 

III – A - Results for TC1 

 

Figure 4. Best results obtained interpolating the 3DLC of . 



Figure 4 shows the lesser errors obtained and the CV used with  to interpolate . The error 

obtained with  and  is about 0.16 mm (the red line). The error obtained with  and 

 is about 0.04 mm (the green line). Figure 4 shows that 51 CV showed errors inferior to  

and . We can also note that 10 CV among these 51 allowed interpolation of with smaller 

errors than  and . These CV excluded some of the 3DLC from LS.   

 

Rank  CV         

          
1 (1, 1, 1, 1, 1, 0, 0, 1, 1) 

2 (1, 1, 1, 1, 0, 0, 1, 1, 1) 

3 (1, 1, 1, 1, 1, 1, 0, 1, 1) 

4 (1, 1, 1, 1, 0, 0, 1, 1, 0) 

5 (1, 1, 1, 1, 1, 0, 1, 1, 1) 

6 (1, 0, 1, 1, 1, 0, 1, 1, 1) 

Table 3. CV of the « Top 6 » for . 

The CV of the “top 6” are reported in Table 3. The best CV for the interpolation of are the ones 

that excluded  and , and used all the others. Also noteworthy is that the second configuration 

excluded  and , and included all the others. This last CV is also one of the best for  and . In 

addtion, we note that  does not figure in this “Top 6”: it was not necessary to learn how to 

construct all the 3DLC to obtain the most accurate 3DLC for . 3 CV excluded 2 3DLC, 2 CV excluded 

1 3DLC, and 1 CV excluded 3 3DLC. Finally, only one CV of this “Top 6” included . 

III – B – Results for TC2 

 

Figure 5. Best results obtained interpolating the 3DLC of . 

Figure 5 reports that the CV with which the interpolated 3DLC of  were more accurate than the 

3DLC interpolated using  and . The error obtained using  and  was superior to 

0.04 mm (the red line) whereas the error obtained using  and  was inferior to 0.04 mm 

(the green line). The error with 27 CV were inferior to  and , and 10 CV among them 

excluded some of the 3DLC of LS. 

Rank  CV         

          



1 (1, 1, 1, 0, 0, 0, 1, 1, 1) 

2 (1, 1, 1, 0, 1, 0, 1, 1, 1) 

3 (1, 1, 0, 1, 1, 0, 1, 1, 1) 

4 (1, 1, 1, 1, 1, 0, 1, 1, 1) 

5 (1, 0, 1, 1, 1, 0, 1, 1, 1) 

6 (1, 1, 1, 1, 0, 0, 1, 1, 1) 

Table 4. CV of the « Top 6 » for . 

Table 4 presents the 6 best CV: 4 of them excluded 2 3DLC, 1 CV excluded 1 3DLC, and 1 CV excluded 

3 3DLC. The CV which excluded  and  appears also in this Table ranked #6. Furthermore,  is 

systematically excluded from the CV of this “Top 6”. 

III – C – Results for TC3 

 

Figure 6. Best CV for the interpolation of . 

Figure 6 shows the 13 CV that allowed greater accuracy than  and  for the interpolation 

of . The mean square error obtained interpolating  using  and  was equal to 0.07 mm 

(the red line) whereas 0.04 mm using  and . One subset of LS permitted greater accuracy 

than  and . 

Rank  CV         

          
1 (1, 1, 1, 1, 0, 1, 1, 1, 1) 

2 (1, 1, 1, 1, 1, 1, 1, 1, 1) 

3 (1, 0, 1, 1, 0, 1, 1, 0, 1) 

4 (1, 1, 1, 1, 0, 0, 1, 1, 1) 

5 (1, 1, 1, 0, 1, 1, 1, 1, 1) 

6 (1, 0, 1, 1, 1, 0, 1, 1, 1) 

Table 5. CV of the « Top 6 » for . 

Table 5 shows the “Top 6” best CV: 2 CV excluded 2 3DLC, 2 CV excluded 1 3DLC, and 1 CV excluded 3 

3DLC.  ranks #2 and the CV that excluded  and  is at rank #4. For this 3DLC,  was excluded 

twice from the CV of this “Top 6”. 



These results prove that it was possible to optimise the ANN interpolation excluding some of the 

3DLC from the learning set. The CVIO improved the accuracy of the construction of personalised 

3DLC.  

III – D – 3DLC inclusion and exclusion 

Nevertheless, the example of  is interesting:  was excluded from most of the best learning sets 

for  and  whereas it was required in most of the best learning sets for . Thus, we studied the 

impacts of the 3DLC on the interpolation accuracy of , , and . For each 3DLC of TS, we 

extracted the “Top 20” best and the “Top 20” worst CV. We then counted the number of times each 

3DLC of LS appeared in the “Top 20” best and in the “Top 20” worst.  

Rank In the “Top 20” best CV In the “Top 20” worst CV 

1 ,   
2   
3  ,  

4   
5  ,  

6 ,   
7   
Table 6. 3DLC rankings for  . 

Table 6 shows the ranking for .  and  were almost always used in the best learning sets.  

ranks #2, before , , ,  (ex-aequo with ), and finally . This ranking has to be put in the 

perspective of the ranking for the worst learning sets. For the former,  was also always used, then 

come ,  ex-aequo with , before the others in the following order: ,  and ,  and  . 

Since it is not possible to interpolate   without , it is absolutely normal for to be first for these 

2 rankings. We can note that   and   are in good positions in the “Top 20” best and in the worst 

position in the “Top 20” worst. In contrast,  is among the worst ranks of the bests and the best 

ranks of the worsts. Thus,  seems to introduce a bias in the learning set. Consequently, we can 

deduce from Table 6 that ,  and  are required whereas   is to be excluded from the learning 

set in order to optimise the interpolation of  . 

Rank In the “Top 20” best CV In the “Top 20” worst CV 

1   
2   ,  

3   
4 ,  ,  

5 , ,   
6   
Table 7. 3DLC rankings for  . 

Table 7 presents the rankings for .  is at the top of the best, before , ,  and . Then come 

, ,  and  , whereas   is at the top of the worst before  ,  and  . Then come ,  and  



 (ex-aequo), and finally . Thus, we can note the positive influence of   whereas ,  and   

seem to perturb the accuracy of the interpolations of  . 

Rank In the “Top 20” best CV In the “Top 20” worst CV 

1   
2  

  

3   
4  ,  

5 ,   
6   
7 ,  ,  

Table 8. 3DLC rankings for  . 

As it is always required for the interpolation of   is at the head of the rankings in Table 8. For the 

best learning sets, this 3DLC comes before , , ,  ex-aequo with , followed by , and finally 

 and  (ex-aequo). For the “Top 20” worst,  is followed by , ,  and , , ,  and . 

Thus,  is required whereas  and  should be excluded in order to optimise the interpolation of 

. 

Rank In the “Top 20” best CV In the “Top 20” worst CV 

1   
2 , ,  ,  

3  ,  

4  , ,  

5 ,   
6   

 

Table 9. 3DLC rankings for , , and . 

At last, Table 9 presents the global ranking for all the 3DLC of TS.  was used in most of the best 

learning sets, then come ,  and , before the others. ,  and  are the last of this ranking.  

was used in most of the worst learning sets, then   ex-aequo with . At last ,  and  appear. 

These last rankings tend to prove that the use of  in the learning phase ensures good 

interpolations, but it is the opposite when considering the rankings of  and . Furthermore,  

and  seem to introduce a bias in the general case. This tends to prove that it is necessary to divide 

the definition domain into sub-domains since the learning of each 3DLC of LS has a very different 

influence over the interpolation of each 3DLC of TS. 

IV – Discussion 

This study enables us to imagine a new kind of adaptation strategy between the one based on rules 

and the Conservative one: the Fuzzy Adaptation. Indeed, in our application domain, there are 

different and (sometimes) conflicting rules (described by different trained ANN) that can be applied 

to compute a solution. Moreover, some of the source cases introduced distortions for the 



interpolation of one particular case, whereas they were strongly required in order to obtain an 

accurate result in other cases.  

Noting  as the solution to a problem of the source case , and  the problem of the 

target case, an adaptation rule is commonly defined as a set of 2 elements  where r is a 

relation between , and  a function that computes a solution 

corresponding to . The adaptation using the rules consists of factorising the solution of the target 

case into solutions for elementary problems. 

In our application, more than one rule can be used for adapting a problem: considering 

, the set of rules , a rule  is a set of 2 elements . Our ambition is 

to explore the possibility of combining and creating new rules from the set of rules specified by 

experts . 

For this purpose, we define the operator  as the operator of combination for 2 rules and the 

operator  as the operator of restriction. 

  and , where  is a set of Fuzzy Combination Vectors. 

It is now possible to define  weights  associated to each .  

Consequently, the adaptation of a problem in the Fuzzy Adaptation will be resolved through a rule 

defined as a combination of a set of rules specified by experts: .  

A future study will have to specify in greater detail the terms of the combination and restriction 

operators. 

V – Conclusion 

We proposed a study of the construction of patient 3DLC interpolating a subset of the entire learning 

set (LS) available to us. The results obtained show the value of this method since it stresses the 

optimisation of accuracy when the interpolation tool is learned using a subset of LS. These subsets 

depended on the person’s height. This new algorithm ( ) forced the learning phase to continue 

until the mean square error between the coordinates expected and interpolated of each 3DLC of the 

subset was inferior to a determined precision, whereas the older version of the learning algorithm 

( ) took into consideration the global mean square error (considering all the 3DLC). 

The best subset of LS for each 3DLC of our Test Set (TS) was different from the others: one 3DLC 

guaranteed optimal precision for the interpolation of one 3DLC of TS when it was used in the learning 

phase, whereas the same one introduced a bias for the interpolation of another 3DLC of TS. 

Nevertheless, the sub-learning set which used all the 3DLC of LS, without  and , seemed to 

guarantee optimal precision for most of the 3DLC of TS. 

Consequently, we must continue to study the influence of each 3DLC on the definition domain first. 

Secondly, a particular effort will be devoted to the improvement of  and turning the 

Combination Vector (CV) into a Fuzzy CV (a vector of pertinence for each 3DLC of LS). The 



determination of the components of the Fuzzy CV becomes a more complex problem that could be 

treated through the Genetic Algorithm and/or use of metaheuristics.  
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