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Abstract. In case of a radiological emergency situation iav accidental human
exposure, a dosimetry evaluation must be estallisisesoon as possible. In most
cases, this evaluation is based on numerical reptasons and models of subjects.
Unfortunately, personalised and realistic humamasgntations are often unavailable
for the exposed subjects. However, accuracy ofrtreat depends on the similarity of
the phantom to the subject. The EquiVox platforneg@arch of Equivalent Voxel
phantom) developed in this study uses Case-BasaddRing principles to retrieve
and adapt, from among a set of existing phantohesohe to represent the subject.
This paper introduces the EquiVox platform and fhaial Neural Networks
developed to interpolate the subject’'s 3D lung corg. The results obtained for the
choice and construction of the contours are presesnd discussed.

Keuwords: Adaptation, Interpolation, Case-Based Reasoningfiédal Neural Net-
work, 3D personalised phantoms.

1. Introduction

In case of accidental exposure to radiation, andesiy evaluation must be estab-
lished for each potential victim (subject) as s@mpossible. In most cases, this
evaluation is based on available 3D voxel Phantomamerical models created from
medical images to represent the imaged subjectwgkimum realism. Examples of
voxel phantoms for dosimetric assessment followimigrnal contamination or exter-
nal exposure can be found [1], [2]. However, evdremnvmedical images are avail-
able, the subject’s specific phantom is not alwagsessible since its construction is
delicate and time consuming, and in emergency caisels time and effort are unaf-
fordable. Moreover, medical images are avoidedsso prevent any additional expo-
sure to radiation. Thus, existing models are usexh éf their characteristics differ
from the subject’s biometrical data. Dosimetry assgent accuracy and the resulting
decontaminating medical action is nevertheless Ihiglependent on the similarity



between phantom and subject. Hence, the actual aio1k at assisting the physician
in choosing and customizing the most similar phantamm the existing and available
ones.

Case-Based Reasoning (CBR) is a problem solvinadethat uses similar solu-
tions from similar past problems in order to sohawv problems [3]. The EquiVox
platform uses the CBR-approach to find the mostlaimphantom(s) within any set of
phantoms and then attempts to adapt them to thadkaistics of the target case (the
subject). EquiVox adaptation tool uses ArtificiaeiNal Networks [4] to adapt the
stored phantoms to the subject.

A large number of phantoms can be found in litea{s], [6] and radiation pro-
tection is also divided into numerous sub-domdindeed, some phantoms are com-
monly used by experts for external radiotherapy aiiners are used by other physi-
cians for evaluation of internal doses receivedatt, each expert has his own collec-
tion of 10 to 20 phantoms. When physician’s usumioms are all too distant from
the subject, the expert must create a new oneethdesing iterative 3D dilations and
contractions, physicians modify the contours of 3Beorgans of their phantoms until
they correspond to those of the subject.

Then, they put them together and obtain the fitnpom on which the computa-
tions will be based [6]. Thus, the adaptation raes guided by their experience and
knowledge. The main challenge of EquiVox is to ogluce the same transformation
process automatically, without human interventidnother requirement of EquiVox
is to be able to use any set of phantoms and fo tihel physician to capitalise on
them. We also hope that such a platform will beduseautomatically create a well-
fitting phantom for each subject in order to inG®#he accuracy of dose calculations.
At this step of the implementation, we relied ormpioms usually used by a team of
experts for pulmonary anthroporadiametry which ¢sinsof evaluating the internal
dose inhaled.

2. The EquiVox application

Figure 1 presents the technologies that were usédtlze data flows over the
EquiVox architecture. All the phantoms are storedRhino3D files [7]. Their charac-
teristics are stored in a database (data flow #8igare 1), the lung contours are ex-
tracted (data flow #1) and then transmitted toAN training module (data flow #2)
which creates the ANN (data flow #3).

When a new phantom is required, the target caserigéen is transmitted to the
retrieval module (data flow #4) which determines #imilitude and confidence indic-
es taking into account the source case (data fw #

If required by the experts, the lung adaptation ®dends the characteristics of
the source cases (data flow #6) to the ANN intexfdoh module (data flow #7) which
loads the trained ANN (data flow #8) and the coaatits of the contour of the lungs



in question (data flow #9) in order to create iptdated contours suited to the target
case (data flow #10).
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Fig. 1. Data flows over the EquiVox architecture.

It is to notice that the adaptation module of EquiMs not complete yet. Since
lungs are the first organs that are designed berxpwe focused on their adaptation
while the EquiVox retrieval phase is able to coneptlie entire phantoms. Thus, the



adaptation module of EquiVox deals with the Lungntors in 3 Dimensions
(3DLC). Other studies have been begun to focuhiermtiaptation of the other organs.

2.1. Case modelling

When radiation overexposure occurs, a dosimetpontemust be established for
all subjects. For each subject, the experts’ fask is to choose the most accurate 3D
phantom considering the information known aboutghbject. Each phantom has its
own characteristics and is chosen by comparingtihgect’'s available measurements
and information to his/her characteristics. Thenpbia is thus chosen by analogy.

As explained, the experts choose the phantom aiceptd the characteristics of
the subject. We exhausted the list of useful charistics furnished by the physicians
of the French Institute of Radiation and Protec{iGtEN).

Thus, in EquiVox, a problem is described as a setdescriptor{d,, ..., d, }.

Each expert has his own setrgphantomgp;, ..., B,}.

EachP; is the solution part of a case and representcédmeours ofm organs:
P, = {P},...,P™}.

Each organO is a set ofq points joined by a Delauney mesh [#° =
{C{°, ...,C;°} whereC/"* denotes the 3D coordinates of pgirf organ0 of phantom
P;. O € {lungs, heart, liver, sternum, ribs, scapulae ngpibreast, skin, oesophagus}

Finally, a casé is equal to[{di, d;} Pi}. We will notet as target case.

2.2. Retrieval phase

The purpose of this phase is to sort the phantdrieedEquiVox case-base accord-
ing to information concerning the subject, eveindomplete. Hence, the number of
known descriptors influences the level of confideit the proposed EquiVox rank-
ing. Thus, along with the similarity indeX;§, a confidence index(| is assessed to
associate the probable error with the retrievedtimi.

In addition, some descriptors may be very imporfansome types of calculations
while others may be totally neglected. Since thgpse of EquiVox is to retrieve and
adapt phantoms, whatever their use, our platforrstrtake into account the impor-
tance of each descriptor. Thus, the descriptore werighted, taking into account
their importance and influence. As presented indfiqns (1) and (2), these weights
{w4, ..., w,} are quantitative values associated to each deéscraamplifying or reduc-
ing the differences betweerandi. They thus stress on the relative influence tingt o
measure represents in comparison to the others.

In fact, when a new problem occurs, some of thgestib characteristics may be
unavailable. Thus, a Boolean valfigis associated to eaeh . §, is equal to O if the
value ofd,, is unknown, and to 1 otherwise.



Hence, a classical algorithm for similarity caldida was used, namely the K-nn
Algorithm that enables a weight to be applied ®dlescriptor values.

The S; value is equivalent to the sum of the distancegédxn the descriptors of
andt, each weighted accordingly. It is given by thédaing equation:
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wherel, is the difference between the maximum and the mini known values
that the descriptod, can take. The; value is always between 0 and 1. The greater
the similarity ofi to t, the closer thé; value is to 1.

Since S; only takes into account the known valuestpthe confidence indek
must be taken into account to define the calcutatincertainty. The more values we
know, the higher the confidence index. Indeedhdf $ubject’s age is the only known
criteria, the similarity value calculated is toyailhsignificant. SaC takes into account
the number of known values according to the follmyiormula:

k=1 Ok-0k
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Z£=1wk ( )

2.3. Adaptation of 3D lung contours

Once a matching case is retrieved, the expert eaid@ either to use the phantom
of the most similar source cases, or require tha\Fax platform to generate a new
phantom, adapting the source cases to the targetimeed, if some available phan-
tom measurements are too different from those @fstibject, the expert may decide
to adapt one of them or even to create a new phantioich may be reused for other
problems later. Thus, when the expert requiregtreration of a new phantom, the
contours of then organs are expected.

Actually, the first organs experts create in sucheasonalised process are the
lungs. The positions and volumes of the other asgare deduced from the lungs.
Thus, we first considered the adaptation of 3D LGogtours (3DLC).

Solution space modelling for 3D lung contours. As presented in the case modelling
part, the lung contours of phantdinare defined in 3D by a set gfpoints joined by

a Delaunay mestg™™ = (¢, .., c2™""9} WhereCji'l“”g denotes the 3D coordi-
s e, Allung i,lung _ilung _ilung
nates of poinf: C; = {x; )Y ) Z; }.

For all the phantoms, the same number of points@efthe 3D contours of the
lungs: q = 26723. The points have been plotted in the same ordérimithe same
Cartesian coordinate system. Thus, the task ofuthg contour-adaptation phase of
EquiVox consists of interpolating the 3D coordirsaté the points ot in the same



order and in the same Cartesian coordinate systefelaunay mesh can then be
applied so as to create the contours of the luhgs o

Adaptation rules. Not all the descriptors that identify the phantoocmtained in
EquiVox are useful for the adaptation of the lurfgieecisely, it has been proven by I.
Clairandet al. that the height of a person prevails for the ggoyrend volume of its
lungs [9].

Thus, when experts decide to create the lung comtmia subject, they choose the
lung contours of the stored phantom whose heigktié@sclosest without taking into
account any other characteristic. The adaptationsisually done manually, applying
mathematical transformations (2D and 3D contrastimnd dilations [6]). These trans-
formations are carried out through 3D modellings¢dsuch as Rhinoceros [7]).

In addition, these transformations are only dribgnexperience, trials and errors,
and may take many hours or more. The delay alseases with the number of sub-
jects whereas the problem resolution delay mayirbéeld. Indeed, in the case of
massive irradiation for example, when a disasten@s a nuclear explosion occurs,
dosimetric reports are required for hundreds oppeof different sizes.

In fact, the creation of new lung contours requiaefaist data-driven method, and
since there is no physical law to governing itsgiesthe expert is not able to explicit
a rule for the transformation of the lung contours.

Method. Since the mesh and the number of points are naablar the adaptation
must be carried out on the point coordinates ofltimg contours, point by point.
Since no formal equation exists, we must discoheough a learning method the
rules that transform the coordinates of the paamt®ne lung contour into other coor-
dinates.

Consequently, data-driven methods using induce@asoning are the most suitable
approaches; ANN and Fuzzy-ANN respond to theseirements. We chose ANN as
the tool for this step, assuming this could sersdle basis for further work with
Fuzzy-ANN if the first results were not convincingle explored the possibility of
using perceptrons with one hidden layer trainedhwaitbackpropagation-based me-
thod.

To interpolate the 3D lung contours, the heigheiguired. Actually, this is one of
the descriptors of the EquiVox target and soursesal et us noth; the descriptor
corresponding to the height of the casndh, the height of the target caseEach

Cjt'“‘”g of t is interpolated froani'l“"g, h; andA,= h; — h, wherei is the case for

which |4, | is the smallest.
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Fig. 2. Phantom heights of the available 3D lung contours.

In Figure 2, the 9 heights of the 3DIR to Py used for the training are reported on
the axis. Other 3DLC were also drawn for the test She 3 heights of these 3DLC
Ty, T, andT; are also reported on the same axis. All the thorgans are represented
in P, to Py whereas only the lungs were drawrminT, andTs.

Training ends when the difference between the drpesnd the obtained values is
minimised. W. Hsieh [10] distinguished four algbrits based on the backpropaga-
tion method:

e The BFGS method (Broyden-Fletcher-Goldfarb-Shani®)a quasi-
Newton method, which approximates the value ofHlessian matrix of
the second derivatives of the function to be misadi

 The L-BFGS method (Limited memory — BFGS) is anpadton of the
BFGS method which optimises the computational ressuto use. Both
of these methods must be coupled with a Wolfe tirse@rch in order to
determine an optimal step size between two itematio

* The Rprop (Resistant backpropagation) method pespaesfirst order al-
gorithm but its complexity increases linearly withtwork topology;

» The iRpropPlus method is one of the fastest arml @& of the most ac-
curate algorithms. This evolution of the Rprop noelthallows cancelling
some synaptic weight updates in the neural netWaknegative effect is
observed.

Table 1. ANN configuration with which the best preliminarysults

Phantom height [cm]  Required precision Best Leaymhethod

178.31 10 BFGS
180.71 10 BFGS
183.03 10 BFGS

These methods were previously implemented anddéstihe EquiVox adaptation
phase of 3DLC. Different required precisions wdes dested. The coordinates of 10
points were randomly extracted from the 3DL(Pgfto Py and a cross validation was
performed. Table 1 shows the algorithm that gaeehést interpolations is the one
with BFGS as backpropagation method and a precisioils to 18.



Then, the chosen ANN configuration was compared pwlynomial (Newton, of
degree 2) and a Spline interpolation method. Thetbie interpolation function pro-
posed by J. Ponce and R. Brette in [11] and then&pine proposed by Scilab [12].
were implemented with Scilab 5.3.2.

For each method, a cross-validation for the sampdifts was undertaken using
the same 3DLC P, to Py. Figure 3 presents the mean distances betweapaofaéed
and expected coordinates. This figure shows thatptilynomial interpolation pro-
duced the greatest errors among the three testegbatations. A factor nearly equal
to 10 can be observed between the polynomial iotatipn and that of the Spline or
the ANN. The Spline and the ANN interpolations galaser errors. Nevertheless, for
all the tested cases, the ANN interpolation ermese inferior to the Spline ones 6
times and equal only once. These results proveuperiority of the ANN interpola-
tions over the other methods since the ANN inteafioh gave a more accurate result
in all the tested cases.

Actually, during the training phase of ANN, leargisets are generally divided in
two parts: some of the elements are used to lehile wthers are used to validate.
During this step, the number of neurons of the &dihyers is also determined. Since
the number of 3DLC of our learning set is limiteee wanted to study the impact of
some 3DLC in the learning. Thus, we defined tworm@infigurations and four pos-
sibilities for each.

o

Polynomial
interpolation

(Newton)
== Spline interpolation

m_ ANN Interpolation

O R, N W B~ U OO N

Mean distance between interpolated
and expected points [mm]

Phantom height [mm]

Fig. 3. Mean distances obtained between interpolated goelcéad coordinates for 10 points
and 3 interpolation algorithms.

Table 2. Learning, validation and test sets tested

Learning set Validation set Test set




Possibility #2 {P,, P,, P,, Ps, P, P;, Pg, Py} {P;} {T,,T,, T3}
Possibility #3 {P,, P,, P3, P, Ps, P;, Pg, Py} (P} {T,,T,, T3}
Possibility #4 {P,,P,,Ps,P,, P, P, Pg, Py} {P;} {Ty,T,, T3}

For the first configuration the constraint over &iéN inputh; — h, = A,> 0 was
added and for the second ofig< 0 was required. Then for each configuration, we
explored the possibility to extract one particydmantom of the learning set and to
include it in the validation set. For each pos#ipilthe test set was always the same:
{T,,T,, T;} Table 2 shows the different possibilities that eversted.

3. Results

The Equivox platform has been implemented and desteaPersonal Computer
equipped with an Intel Core i3 CPU, 2.53 GHz, an@iB RAM. The source case
descriptors are stored in a mySQL database managesystem (DBMS). Two pro-
gramming languages were used: Java and C. Thevatphase, the GUIs, and the
storage phase modules developed by our team incl&++ programs also deve-
lopped by our team for the adaptation phase. Tlatpims were drawn using Rhi-
no3D.

The ANN learning was performed in C++ on the supewguter facilities of the
Mésocentre de calcul de Franche-Cojrttéat contains 74 nodes based on Intel pro-
cessors (4 or 6 cores) and 12 to 96 GB of ram. Earhing phase is monothread, so
several learning phases could be simultaneouslguted on one node.

3.1. EquiVox case base

The EquiVox case-base used for the tests contéddedhole 3D phantoms with
3D organ contours and characteristics. These phenteere manually designed from
the ICRP standard female phantom [5] for pulmorearthroporadiametry computa-
tions by the team of internal dose evaluation dNR[6]. These 3D phantoms were
developed to cover as well as possible the diwensithe female population: thoracic
phantoms of cup sizes ranging from A to F and cbest from 85 to 120 (European
Standard Clothing Units) [13].

These phantoms were developediforivo lung counting optimisation where vo-
lume and weight precisions are available for thio¥ang structures: lungs, heart,
liver, sternum, ribs, scapulae, spine, breasts), skind oesophagus. The following
external measurements are also available: agehsmtt, weight, cup size, and chest
girth (chest and under-bust circumferences). Thillsthese female phantoms and
characteristics formed the 24 source cases ok#ted EquiVox case-base.

The experts determined a list of 14 descriptorsritavarying degrees of influence
in the choice of phantom for this type of calcudati These descriptors are age,
height, weight, sex, wether the subject smokesoty thorax volume, lung volume,
extrathoracic thickness, fat-muscle proportion, erdoust circumference, wrist di-



ameter, chest circumference, heart volume, andstifdect’s origin (target case) /
phantom (source case).

For the adaptation phase tests, the 3D lung comtolithese 24 phantoms were
considered and extracted. In fact, there are 9ndisBD lung contours reported on
Figure 2. For example, a phantom with a 90B thaad one with a 90C have the
same 3D lung contours since breast and lung volandscontours are not correlated
at all. In addition, three 3DLC corresponding thet heights were created by the
same procesd;, T, andT; whose heights were reported on Figure 2.

3.2. EquiVox retrieval phase performance

In order to evaluate the performance of the Equivkixieval phase, the measure-
ments of 80 different female subjects randomly etk from the CAESAR database
[14] (Civilian American and European Surface Anpmmetry Resource database)
were considered as target cases descriptions. &fttex is a database of over 2000
optical scans of Italian and Danish male and fersalgects. Some of their measure-
ments (age, sex, origin, and weight) are also dtai¢h these scans and the spatial
resolution enabling calculation of chest girth, cige, and the height of each subject.

IRSN experts determined 5 sets of subject chaiatitsr which influence the pul-
monary anthroporadiametry dose computations. Thightw, of the associated
descriptors from the set influencing the phantomiad the most were set at 4, whe-
reas the weights of those with no influence on thaé¢ of computation were set at 0.
In the case oin vivo counting, it is known that the chest circumfereaod lung vo-
lumes are the most important parameters [15]. Hethedr associated weights were
given the highest value: 4. Moreover, in this exeEmghe weights associated to the
internal volumes were set at 0.

For each target case, we compared the sourcelmsapert would have chosen to
the classification proposed by the EquiVox retrlgMaase. For 75 target cases, the
experts and the EquiVox retrieval phase chose dmeessource case first. Thus, 5
times, the EquiVox retrieval phase put the sourasecchosen by the experts in
second place. Consequently, in 93.75% of the c&spsyox chose the most accurate
source case regarding the target case descripfion.5 target cases, for which the
EquiVox retrieval phase missed the most accurdigisn, can be explained by the
influence of all other informed descriptors (ageight, weight, etc.). In fact, the dif-
ference between the values of these descriptotkeise 5 target cases adds up and
leads to a low similarity index.

In addition, when no descriptor weighting was assty w, =1Vk €
{1, ...,14}), the EquiVox retrieval phase put the most aceusaiurce case in first
place only 54 times.



3.3. Performance adapations of lung contours

As explained in the previous part of this paper,tested two main configurations
for EquiVox adaptation (one considering the phantbeights inferior to the target’
one and one considering the phantom’ heights sopési the target’one) and four
possibilities for each configuration.

Table 3 shows the results obtained with the ficstfiguration (whem\, > 0). For
the interpolation off;, the best results were obtained wtigrnwas in the validation
set and the worst witR, in it instead. FofT,, the most accurate adaptation was ob-
tained whenP, was in the validation set and the least one WjthConcerningrs,
including P, in the validation set gave the best interpolatiamereas including’s
gave the worst.

Table 3. Distances between interpolated and expected paeiitts the first configuration
(A> 0).

Possibility (phantom of the validation set)

3DLC Deviation #1 (P,) #2 (P3) #3 (Pg) #4 (P,)
[mm]
T, Mean 1.8 12 3.1 1.5
Standard 0.7 0.8 1.2 0.5
T, Mean 2.1 15 3.4 13
Standard 0.8 0.8 1.2 04
T Mean 0.9 2.5 1.7 0.5
Standard 0.3 1.2 0.6 0.2

Generally, we can remark thBt always provided the highest errors and none al-
ways gave the best interpolation accuracy. Finally,can note very important differ-
ences between best and worst deviations: the itespolations were more than twice
more accurate than the worst ones.

Usually, experts use phantoms described with 1.8byrh.8 mm by 4.8 mm vox-
els. Regarding this constraint, the best adaptatwere satisfying whereas the worst
could infer some errors at the dosimetric calcalai

Table 4. Distances between interpolated and expected puiitts the second configuration
(A< 0).

Possibility (phantom of the validation set)

3DLC Deviation #1 (P,) #2 (P3) #3 (Ps) #4 (P,)
[mm]
T, Mean 34 19 8.4 3.2
Standard 1.7 0.7 2.6 1.1
T, Mean 24 17 54 1.8

Standard 1.0 0.6 1.7 0.7




T Mean 1.2 0.8 0.9 0.9
Standard 0.7 0.2 0.3 0.3

Table 4 shows that the best results with the seammfiguration (whem, < 0)
were obtained with the same learning set and wididaset for all the tested 3DLC:
{P1,P,, P, P, P, P;, Pg, Py} as learning set anfP;} as validation set. Nevertheless,
the worst results were interpolated wRbssibility #3for T,andT,, andPossibility #1
for T;. Furthermore, the best interpolation computedrfevas less satisfying than the
others since the mean error is superior to the Ivdixeensions commonly used by
experts of radiation protection.

Higher differences can be observed between bestvarst interpolations of; and
T, with this configuration than with the first onéietbest interpolations were respec-
tively four and three times more accurate thantbest ones.

On the contrary, the difference between best angtviterpolations of’; and this
configuration were less important than the one Withother. A partial explanation is
the distance variations df,, T, andT; from the adapted 3DLC: whefy,> 0, T
(185cm) was adapted froRy (183.03cm) 4, = 1.97cm), whereas foA, < 0, T; was
adapted fromP, (185.25cm) 4,= —0.25cm). On the contrary]; (165cm) was
adapted fronP; (164.5cm) whem,> 0 (A,= 0.5cm), and fromP, (167.54cm) when
Ap< 0 (A= —2.54cm); and similarly,l, (179cm) was interpolated froRy (178.31)
(A= 0.69cm) orP, (180.71) f,= —1.71cm).

We can notice that the best interpolations werallswbtained when using the
phantom whose height is the closest.

As a remark, the adaptations performed With> 0) as additional constraint were
generally more accurate than the ones performed(Wjt< 0). In addition, whatever
the tested configuration was, the learning anddatilbn sets had a great impact on the
interpolation accuracies and important differencas be observed. Finally, we can
notice that interpolations df; were always twice better than interpolations & th
other 3DLC.

4. Discussion

Figure 4 shows some interpolated lungs and thewracies. Figure 4a presents the
most accurate lungs interpolatdy (vith the validation set #4 an,> 0) and Figure
4b the worst oneT{ with the validation set #3 anfi,< 0). Each point is colored
according to its interpolation error, from bluegflowest) to red (the highest).
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Fig. 4. Representation of an interpolated lung with: Ta)with the validation set #4 and
Ap> 0, and (b)T; with the validation set #3 anyg, < 0.

Since the interpolation deviations were inferiorthe commonly used voxels di-
mensions of radiation protection experts, the bestpolations for each 3DLC were
suitable. Actually, as it is visible in Figure #etbest results we obtained allow inter-
polating lung contours with a suitable precision fadiation protection reports. Nev-
ertheless, the interpolation accuracy should beeased for other domains like radio-
therapy, where physicians and medicine experts udsosuch models as a basis for

dosimetric reports.

Therefore, it emphasizes the importance of theigardtion and the 3DLC chosen
for each set, since the inclusion of one 3DLC ia talidation set can generate an
accuracy twice higher or more than another. Intamidiincluding one 3DLC in the
validation set introduced a bias for some interpofs and, at the same time, im-
proved the accuracy of another target case (itthegase foP; with T;andT; when

A, was positive for example).

Indeed, EquiVox case-base is relatively young amdtdd. Thus, its adaptation
phase is limited by the number of known 3DLC. Theults presented in this study
show that some 3DLC can introduce bias in the adiapt tool. These results confirm
and quantify the general drawback of using inteafoh as means of adaptation in
CBR systems [16]: imperfections are introduceddaped solutions.

Consequently, two ways of improvement are now a®rsid for Equivox.

The first one consists in capitalising phantoms aBd.C and so to ease progres-
sively the imperfections of the solutions; the ANtterpolations, based on learning
sets more and more important, will become bettdrlagiter.

Nevertheless, a second option can be explored,iwdepends on the association
of vectors to the learning set, to optimise intésifon accuracies and to determine, a
priori, the best learning set/validation set focletarget case.



5. Conclusion

The EquiVox platform was developed for emergentyasions, when a fast and
reliable decision is required in order to choose ltbst 3D phantom to perform dosi-
metry calculation and establish a dosimetric report

The choice is made using the CBR approach basekleofeedback from previous
similar experiences. EquiVox helps the expertshisosing the most similar 3D phan-
tom by means of the computation of indices for Einty and confidence. The simi-
larity index defines the equivalence between thgetacase and the source case, whe-
reas the confidence index highlights the uncergamthe similarity calculation.

The tests performed on an average set of targes g@s/e an efficiency of 93.75%
in the application case @f vivofemale counting for pulmonary anthroporadiametry.

Furthermore, an adaptation strategy for 3D Lungt@ams (3DLC) was imple-
mented and discussed. This strategy was basedtiiciAr Neural Networks. Differ-
ent configurations based on different sets of 30tcClearning and validation were
tested and analysed through the interpolationkreftnew lung contours.

The results show the importance of the choice @f3LC repartition between the
learning and validation sets: whereas the bestpatations met the requirements of
experts, it was not always the case for the wareso

Some of the interpolation errors were related withperfections that can be con-
tained in the source case solutions. Thus, fustitek will focus on the elaboration of
an adaptation algorithm capable of taking into aotahe confidence that can be
associated to a source case solution.

In other words, our goal is to propose a tool thaates rules for the adaptation of
target cases using this confidence indice. Moreawverwill also extend the EquiVox
adaptation to other organ contours of thorax.
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