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ABSTRACT 

A 3D viscoelastic model is presented, based on the use of finite element method for the study of the nonlinear 

tensile behaviour of hemp fibres. On the basis of an experimental investigation, Part I of this study (Placet, 

Cisse and Boubakar, Composites Part A 56:319-327, 2014) proposed a scenario based on several physical 

mechanisms, in order to explain the nonlinear behaviour of such fibres. These mechanisms included 

viscoelastic strain, cellulose microfibril reorientation, and shear strain-induced crystallisation of the 

amorphous paracrystalline components. The second part of this ongoing study proposes to implement such 

mechanisms and the associated constitutive laws in a simplified 3D model, in order to evaluate the 

contribution of each mechanism to the macroscopic tensile behaviour of the fibre.  

The results show that the proposed anisotropic viscoelastic constitutive law, describing finite transformations 

through a material rotating frame formulation, is able to accurately simulate the shape of the experimentally 

observed tensile curves. This model is also used to investigate the influence of dislocation areas on the tensile 

behaviour and stress fields. 
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ABBREVIATIONS 

C: crystallization 

D: default 

E: elastic behaviour 

MFA: cellulose microfibrils angle 

MFR: cellulose microfibrils reorientation 

VE: viscoelastic behavior 

 

NOMENCLATURE 

(�⃗�, �⃗⃗�, 𝑍): global coordinate system related to the 

fibre (Z: axial direction) 

 

Mechanical tensors 
𝜎 : Cauchy true stress tensor 

𝜀 : total strain tensor 

𝜀𝑒: elastic strain tensor 

𝜀𝑣𝑒: viscoelastic strain tensor 

𝑆: elastic compliance tensor 

𝑆𝑣𝑒: viscoelastic compliance tensor 

 

Elastic parameters 

EL , ET , νLT , νTT , GLT : layer elastic properties 

(longitudinal and transverse moduli, Poisson's 

ratios , and shear modulus) 

 

Viscoelastic parameters 

βT , βTT , βLT : parameters characterizing the 

layer viscosity 

 𝜉𝑖 (𝑖 ∈ ℕ): second order tensors corresponding to 

elementary mechanisms of viscoelastic flow 

𝜇𝑖 : weighing coefficients of the viscous 

mechanisms  

𝜏𝑖 : release times of the viscous mechanisms  

𝑧𝑛𝑐 , 0 , Δ : shape parameters of  triangular 

spectrum distribution of the relaxation times 

(centre, half-width, interval between two 

relaxation times) 

0: constant axial stress. 

𝐽𝑍𝑍𝑚𝑜𝑑(𝑡): computed axial viscoelastic 

compliance function 

𝐽𝑍𝑍𝑒𝑥𝑝(𝑡): experimental axial viscoelastic 

compliance function 

𝐽𝑍𝑍𝑚𝑜𝑑
𝑘  (𝑘 ∈ ℕ): k

th
 computed value of axial 

viscoelastic compliance 

𝐽𝑍𝑍𝑒𝑥𝑝
𝑘 : k

th
 value of the experimental axial 

compliance data 

 

Transformation 

𝐹: deformation gradient  

: supplementary angle of the microfibrils angle 

𝜒0: microfibrils direction prior to transformation 

𝜒: microfibrils direction after transformation 

𝑄𝑓: rotation tensor 

(𝑒01, 𝑒02, 𝑒03): Lagrangian frame 

(𝑒1, 𝑒2, 𝑒3): material frame 

 

INTRODUCTION 

Cellulose fibres from wood and plants represent a promising class of reinforcement materials, for 

use in high-performance polymer matrix composites. Because natural fibres are characterised by the 

strong variability of their mechanical properties and their high sensitivity to temperature and 
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humidity, the design of reliable structure-based composites containing such natural fibres is a 

significant challenge for engineers, who are accustomed to using the consistent and accurate data 

available in the case of man-made fibres. These last ones are inherently produced in highly-

controlled conditions, unlike natural fibres. 

In addition to their highly scattered mechanical properties, numerous fibres are characterised by 

nonlinear tensile behaviour. The understanding of this particular behaviour is of great importance, 

in view of the development of composites reinforced with plant fibres, since the behaviour of these 

fibres could have an impact on their performance when they are used to reinforce composite 

materials. Several authors have recently observed nonlinear behaviour in unidirectional composites 

reinforced with flax fibres (1-5). Some authors have also mentioned an increase in stiffness under 

cyclic loading, a behaviour which has been observed at the scale of individual fibres (6). 

Many hypotheses have been proposed in the literature to explain the nonlinear tensile behaviour of 

isolated wood or plant fibres, and the fibres' stiffness recovery or improvement after loading beyond 

the yield point. These hypotheses were discussed in Part I of this study (7). In the case of wood 

tracheids, Page et al. (8) confirmed a relationship between the nonlinear shape of the tensile curve 

and the onset of cell wall buckling. They clearly showed that the yield point (i1) corresponds to the 

onset of wall buckling. More recently, Eder et al. (9) also showed that thick-walled fibres are highly 

resistant to tension buckling, and that this phenomenon can therefore explain the nonlinearity of the 

stress-strain curve only, in the case of a thin-walled fibre. Since hemp fibres generally have a thick 

wall, tension buckling therefore does not explain the nonlinearity of the stress-strain curve in the 

case of such fibres. Other authors have also attributed nonlinear behaviour to irreversible 

reorientations of the cellulose microfibrils with respect to the fibre axis in particular in the S2 layer, 

when they are submitted to axial loading. S2 is the main sub-layer of the cell wall in terms of its 

thickness and therefore contributes mainly to the global mechanical behaviour of the fibre. A linear 

fit was established between the microfibril angle (MFA) and strain for coir fibres, by Martinschitz 
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et al. (10). Other authors have attributed this nonlinear behaviour to shear deformations in the non-

crystalline region, which can partially damage the cell wall, or provoke a stick-slip phenomenon 

(11). This stick-slip mechanism proposed by Keckes et al. (11) operates like a ‘molecular Velcro’. 

According to these authors, beyond the yield point (i1) the shear stress could provoke a viscous flow 

of the matrix. When the stress is released there would be no back-flow of the matrix, but a lock-in 

phenomenon associated with immediate bond re-formation in the fibrils' new position. This could 

explain irreversible strain without significant damage. This model supposes the presence of non-

covalent interactions between hemicellulose chains attached to adjacent cellulose microfibrils. 

Altaner and Jarvis (12) proposed an alternative model in which hemicellulose chains bridging 

continuously from one microfibril aggregate to the next. However, the mechanism is different; the 

computed tensile curves are similar to those of the original model. 

Nonlinear tensile behaviour was modelled by Nilsson and Gustafsson (13) for hemp fibres, by 

introducing defects into the helical structure of the cellulose microfibrils and assuming that the 

hemicellulose has an elasto-plastic constitutive relation. Navi and Sedighi-Gilani (14, 15) proposed 

a model for wood fibres with an elasto-plastic behaviour for amorphous polymers, based on the 

assumption of a helical, non-uniform distribution of cellulose microfibrils in the fibre and damage 

to the amorphous constituents after yielding. The origin of the dissipative behaviour of elementary 

fibres is thus attributed to plasticity by these authors. 

In the Part I of this study, using experimental investigations we proposed a scenario centred on 

several physical and microstructural mechanisms, in order to explain the nonlinear behaviour (type 

3) of such fibres, including viscoelastic strain, cellulose microfibril reorientation and shear strain-

induced crystallisation of the amorphous cellulose. In the present, second part of the study, we 

propose to implement such mechanisms, together with the associated constitutive laws, into a 3D 

model which can be used to evaluate the contribution of each physical mechanism to the 

macroscopic tensile behaviour of type 3of the fibre. 
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MODELING 

3D model 

The macroscopic simplified 3D model used for this study is based on a previously developed 

model, described in detail in (16). The elementary hemp fibre is idealised as a single-layered, 

hollow, thick-walled cylinder made of an orthotropic material having a helical orientation 

(corresponding to the cellulose microfibril orientation). The possible variation in cross-section 

shape and size along the fibre length, non-unity transverse aspect ratios (i.e. non-circular cross-

section) and their induced effects on the fibre mechanical behaviour (stress concentration, fibre 

rotation…) are therefore not addressed in the model. The transverse anisotropy introduced by non-

unity aspect ratios is also in consequence ignored in this model. The wall is modelled as if it were a 

long fibre-reinforced composite material, made with a mixture of three different polymers. The wall 

properties are determined using a homogenisation technique (16). The values obtained for its elastic 

properties are summarized in Tab. 1. The fibres were considered to be free to rotate, and the 

influence of the boundary conditions on the computed value of the apparent modulus was studied in 

Part I of this paper. It was shown that although the testing device prevented the fibre from rotating 

during tensile tests, the experimentally determined value of the apparent E-modulus was more 

closely related to the numerical value determined using a free rotation. This was explained by the 

relatively strong hypothesis of cellulose microfibril continuity formulated when constructing the 

model. 

Hygro-mechanical coupling was not considered in this version of the model. 

The external diameter of the fibres is 13.3 µm, and that of the lumen is 4.46 µm. These nominal 

values were determined experimentally, and are consistent with the dimensions typically reported in 

the literature. 

The model for the fibre wall was developed assuming conditions of anisotropic viscoelasticity, in 

order to correctly represent the fibre’s behaviour, when it is observed under experimental 



 

6 

conditions. Microstructural variations as a function of loading level, such as MFA and cellulose 

crystallinity, were also taken into account using the appropriate constitutive laws, which were then 

implemented in the finite element code Abaqus ®. 

 

Dislocation model 

It is well known that plant fibres have wall irregularities, which are commonly referred to as 

dislocations, nodes or kink bands. For hemp fibres, these dislocation areas are located mainly in the 

S2 layer (17) and represent from 12% to 21% of the total fibre wall (18). They are induced mainly 

by axial compression during the growth phase of the plant, and by the fibre separation process (19). 

Although the mechanisms responsible for these dislocations are not well understood, it is generally 

accepted that the cellulose microfibrils inside the dislocations are oriented differently than in the 

surrounding fibre wall. Using polarised Raman microspectroscopy, Thygesen and Gierlinger (20) 

have recently shown that the MFA ranges from approximately 5° to 10° in the bulk fibre wall, and 

is approximately 30° in the central part of the dislocation. On each side of the dislocation, two 

regions were found with opposite winding directions and an MFA of approximately 10°-15°. 

On the basis of this observation, as well as the results from some of our measurements, an MFA of 

11° was used in our numerical simulations for the bulk regions of the fibre, and an MFA of 30° was 

used for the dislocation areas.  

As some of these simulations showed that the regions on either side of the dislocation (with 

opposite winding directions) have no significant influence on the fibre’s tensile behaviour, these 

areas were not taken into account in the model presented here. 

The dislocations were also considered to extend all the way across the fibre, and to make up 25% of 

the fibre wall. Dislocations are distributed along the fibre at approximately regular intervals. Again, 

since the numerical simulations showed that the fibre’s behaviour is not significantly influenced by 

the distribution of these dislocations, these were modelled as if they were grouped together in the 

same area. 



 

7 

 

Constitutive laws 

  Visco-elasticity 

Viscoelastic model 

Assuming that the local state of the material is completely defined by the elastic strain tensor 𝜀𝑒 and 

a set of second order tensors  𝜉𝑖 (𝑖 ∈ ℕ) corresponding to elementary mechanisms of viscoelastic 

flow, the state law leads to the following instantaneous constitutive equation : 

 

ℰ̇ − ℰ̇𝑣𝑒( 𝜉𝑖 ;  𝜎) = 𝑆�̇�,                     (1) 

 

where 𝜎 is the Cauchy true stress tensor, 𝑆 the elastic compliance tensor corresponding to a 

transverse isotropic behaviour with respect to the microfibrils direction, 𝜀𝑣𝑒 the viscoelastic strain 

tensor and 𝜀 the total strain tensor such as 𝜀 =  𝜀𝑒 + 𝜀𝑣𝑒. 

 

Following (21), the viscoelastic flow rule is given by : 

 

𝜀̇𝑣𝑒 = ∑ �̇�𝑖
𝑛
𝑖=1 = ∑

1

𝜏𝑖

𝑛
𝑖=1 (𝜇𝑖𝑆

𝑣𝑒𝜎 − 𝜉𝑖),                   (2) 

 

where 𝑆𝑣𝑒 is a viscoelastic compliance tensor whose general form is derived by considering an 

isotropic transverse behaviour with respect to the microfibrils direction, which is assumed to be 

purely elastic :  
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𝑆𝑣𝑒 =

(
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𝛽𝐿𝑇

𝐺𝑇
      0          0   

0               0              0              0        
𝛽𝐿𝑇

𝐺𝑇
      0  

0            0            0              0         0       
𝛽∗

𝐺𝑇𝑇 )

 
 
 
 
 
 
 

 ; 
𝛽∗

𝐺𝑇𝑇
= 2(

𝛽𝑇

𝐸𝑇
+
𝛽𝑇𝑇𝜈𝑇𝑇

𝐸𝑇
)                (3) 

 

Such a tensor requires, in addition to the classical elastic parameters, the identification of three new 

parameters (𝛽𝑇 , 𝛽𝑇𝑇 , 𝛽𝐿𝑇) related to the viscoelastic behaviour. 

 

Also in equation 2, for a given i value, 𝜇𝑖 and 𝜏𝑖 represent respectively the relative weight and the 

corresponding release time.  

A triangular spectral model is used in this work to define a distribution function of 𝜇𝑖 with respect 

to 𝑙𝑜𝑔(𝜏𝑖) under the following condition: 

 

∑ 𝜇𝑖
𝑛
𝑖=1 = 1                      (4) 

 

This kind of spectrum is defined by its centre 𝑧𝑛𝑐 and its half-width 𝑧𝑛0 as shown in Fig. 1 where Δ 

depends on both these quantities and on the number n of elementary mechanisms. For the sake of 

accuracy, thirty-one elementary mechanisms are used. 

 

Parameter identification 

Two scalar independent creep functions have to be experimentally determined to characterize 

anisotropic time-dependent behaviour of hemp fibres. Laborious experimentations work has to be 

performed to determine these functions, in particular to determine the transverse creep function. In 
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this study, we are only working with the experimentally determined axial creep function. The 

theoretical axial viscoelastic compliance is expressed as follows: 

0
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 ; 

𝑆𝑧𝑧
𝑣𝑒 =

𝛽𝑇

𝐸𝑇
cos4(𝜓) +

𝛽𝐿𝑇

𝐺𝐿𝑇
cos2(𝜓)sin2(𝜓)             (5) 

 

 is the supplementary angle of the MFA (90° − 𝑀𝐹𝐴) and 0
 
the constant axial stress. 

 

On the basis of the axial viscoelastic compliance, only two (𝛽𝑇 , 𝛽𝐿𝑇) of the three viscoelastic 

parameters can be identified (Eq. 5). These two viscoelastic parameters were identified from a creep 

test on a single hemp fibre, combined with the use of the aforementioned model and a hybrid 

minimisation algorithm. The results of a broad experimental campaign, made with elementary hemp 

fibres in order to accurately characterize their creep behaviour, will be presented in a forthcoming 

paper. For this study, a creep curve recorded on a single hemp fibre at a relative humidity of 

50 ± 5% and a temperature of 21 ± 1 °C was used to identify the viscoelastic parameters. This test 

was made using a tensile machine (DMA Bose Electroforce 3230) with a clamping length of 10 mm 

and a constant load of 30 mN. The axial strain was determined as the fibre elongation divided by its 

initial length, and was recorded as a function of time for a period of 3000 seconds. 

In order to avoid convergence towards local optima in the case of multimodal test functions, the 

Levenberg-Marquardt algorithm was combined with a heuristic method based on a genetic 

algorithm. This hybrid algorithm is described in (22, 23), and involves minimisation of the 

objective function f (Eq. 6). 
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where 
k

ZZJ
exp

 is the k
th
 value of the experimental compliance data, 

k

ZZJ
mod

 is the k
th
 computed value 

using the aforementioned model, and n is the number of elements in the dataset. 

Fig. 2 shows that by combining this spectral model with a suitable identification technique, a 

relatively good fit can be achieved with the experimental data. A broad study on viscoelastic 

spectral models will soon be submitted for publication. It will show that a better fit can be achieved 

with the experimental data when using Gaussian or parabolic spectra. For this study, the time-

delayed response identified with the simple triangular spectral model is sufficient to ensure a 

suitable representation of the experimental behaviour. The identified parameters are summarized in 

Tab. 1. 

 

  Evolution law of MFA  

Although the relationship between the initial MFA and the initial or tangent apparent modulus of 

fibres placed under tensile loading has been widely investigated, both experimentally and 

theoretically, very little research has been devoted to the study of MFA variations in the same fibre 

during tensile tests. From the experimental point of view, this type of study is particularly difficult 

to perform and requires the use of synchrotron radiation when an X-ray scattering technique is used 

to measure the MFA. Contradictory results have been published in the literature. Contrary to the 

results of Kölln et al. (24), Astley and Donald (25) did not observe a change in the distribution of 

flax fibre orientations when they were placed under strain. In a previous study using WAXS, we 

measured a slight decrease in MFA (approximately 3°, from 10.8° to 7.8°, for an axial strain 

varying from 0% to 2%) with a bundle of hemp fibres, mainly in the first portion of the tensile 

curve (26). These results, recorded at the scale of a fibre bundle, cannot be generalized to the case 

of a single fibre. In the first part of this study, using in situ polarised light microscopy (PLM) on 

single hemp fibres, it was also observed that some of the microfibrils became realigned. This type 
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of quantitative approach should be interpreted with considerable caution, since PLM allows mainly 

the microfibrils located on the fibre wall surfaces to be observed, and not those of the S2 layer. 

As a consequence of the difficulties encountered in determining a law to provide an accurate 

description of the variations observed in the MFA, in the present study we propose a consistent 

modelling based on kinematic and material considerations. To the best of the authors’ knowledge, 

this is the first time a theoretical model has been proposed to describe this phenomenon. 

The proposed approach assumes that the fibre is locally subjected to finite transformations which 

involve large rotations and small elastic-viscoelastic strains. In the context of an incremental 

computation, the previous constitutive framework (Eqs. 1, 2, 3) remains valid in a material rotating 

frame whose one of the axis coincides with the microfibrils direction.  

In this study, the evolution law of the cellulose microfibrils is derived from the intrinsic expression 

of the deformation gradient 𝑭 in the case of a plane kinematics with respect to the radial direction. 

Hence, by using a lagrangian frame (�⃗⃗�𝟎𝟏, �⃗⃗�𝟎𝟐, �⃗⃗�𝟎𝟑) and a material one (�⃗⃗�𝟏, �⃗⃗�𝟐, �⃗⃗�𝟑) such as �⃗⃗�𝟎𝟏 and 

�⃗⃗�𝟏 define the same material line during the transformation and �⃗⃗�𝟎𝟐 (respectively �⃗⃗�𝟐) remains in the 

plane perpendicular to the radial direction �⃗⃗�𝟎𝟑 = �⃗⃗�𝟑 (see Fig. 3), the deformation gradient takes the 

following form : 

 

0
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Let 𝜒0 be the microfibrils direction prior to transformation, and let the two directions 𝑒1
0 and   𝜒⃗⃗⃗ ⃗0  be 

separated by an initial reference angle 𝜓0 = 90° − 𝑀𝐹𝐴. When the rotation 𝑄𝑓 is considered, the 

new microfibrils direction becomes: 

𝜒 = 𝑄𝑓   𝜒⃗⃗⃗ ⃗
0                       (8) 
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and the direction �⃗�1 = 𝑄𝑓𝑒1
0 are still separated by the angle 𝜓0. 

Hence : 

 

𝑄𝑓 = 𝜒𝑖⨂𝜒𝑖
0 = 𝑄𝑖𝑗𝑒𝑖⨂𝑒𝑗

0              (9) 

 

where 𝑄11 = cos (𝜓 − 𝜓
0), 𝑄12 = −𝑠𝑖𝑛 (𝜓 − 𝜓

0), 𝑄21 = sin (𝜓 − 𝜓
0) and  𝑄22 = cos (𝜓 − 𝜓

0). 

Since the microfibrils direction is a material one, the direction 𝜒 can also be computed by the 

following expression : 

 𝜒 =
𝐹  �⃗⃗⃗�0

‖𝐹  �⃗⃗⃗�0‖
               (10) 

 

From Eq.8 and Eq. 10, it comes finally:  
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  Strain-induced crystallisation law 

In addition to the change in MFA under tensile loading, we also take into account any possible 

crystallisation of the paracrystalline polymers. Indeed, using in situ X-ray scattering on dry flax 

fibres, Astley and Donald (25) have shown that strain-induced crystallization of the cellulose 

microfibrils can occur when the fibre is subjected to tensile strain. The synchrotron measurements 

performed by these authors provide evidence that non-crystalline cellulose chains are initially 

oriented. The existence of non-cellulosic, highly ordered paracrystalline domains has also been 

revealed by proton spin relaxation time calculations, made by Duchemin et al. (27). Using an X-ray 

diffraction technique, Toba et al. (28) also showed that cyclic sorption can promote the 

crystallization of cellulose microfibrils in wood cell walls, regardless of heating. In fact, it is well 

known that heat treatment can lead to the degradation of the amorphous cellulose surrounding the 
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cellulose microfibrils, thus inducing a change in their crystallinity. These authors concluded that 

non-crystalline cellulose progressively forms hydrogen bonds with the cellulose at the surface of the 

crystalline region during sorption cycling, thus increasing the size of the crystal.  

To the best of the present authors’ knowledge, there is currently no evidence in the literature of 

strain-induced crystallization in hemp fibres, when these are subjected to tensile loading. However, 

when measurements performed on flax fibres and wooden materials are considered, the hypothesis 

proposed in Part I of this study, according to which crystallization could occur under mechanical or 

hygro-thermal loading of the highly ordered paracyrstalline components, appears to be relevant.  

In view of the lack of existing experimental data (both quantitative and phenomenological), it is 

proposed, in the present study, to consider an arbitrary linear variation of the crystallinity ratio, as a 

function of shear strain. It is assumed that this ratio increases linearly from 65% to 85%, when the 

in-plane strain shear increases from 0.5% to 4%. 

 

 

 

FE Modelling 

Several 3D (8- or 20-node) meshes were tested using the FE Abaqus® Code to represent the fibre, 

using the model described above (see (16) for the corresponding numerical modelling). When the 

elastic axial, hoop and shearing stresses aligned in the radial direction of the fibre are compared 

with the analytical elastic solution (16), and the modelling and computation time requirements are 

compared, a one-8nodes-element mesh in the direction of the fibre radius appears to provide a good 

compromise. In order to follow the fibre’s curved geometry, 40 elements are used to represent its 

circumference. A total of 80 elements are used in the axial direction, to accurately model any 

defects present along the fibre’s length. Fig. 3 provides an example of an undeformed, and a 

deformed mesh. The micro-fibril direction is defined with respect to this direction  (𝜓0 = 79°), 

rather than the axial direction (MFA = 11°) used for the FE calculations. The calculations are made 
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using either an elastic or a visco-elastic behaviour, with or without MFA updating, and with or 

without the assumption of the crystallinity ratio increasing as a function of fibre deformation. Any 

experimentally observed defects along the length of the fibre are modelled by an area in which the 

mechanical behaviour is the same as in the bulk area of the fibre, but the MFA is smaller than in the 

fibre  (𝜓0 = 60°). The initial angle in the zone having a defect was tested for different MFA values, 

over the range (50°-70°), with a corresponding percentage of defects lying in the range between 

25% and 75%.  

The loading is applied by imposing displacements at the both ends of the sample; a global axial 

strain is obtained by computing the ratio of the displacement to the length of the sample. The strain 

rate is of the same order of magnitude as the experimentally observed value, i.e. approximately 

5.10
-4

 s
-1

. 

In order to compare these calculations with our experimental results, the global axial stress was 

computed by summing the reactions - to the imposed displacement - at all nodes belonging to the 

end surface. This force was then divided by the surface area of the sample, to obtain the axial stress. 

For each load increment, the tangent of the apparent Young’s modulus was obtained by computing 

the ratio between the stress increment and the strain increment. In order to correlate the simulations 

with the experimentally determined values, the fibre’s mechanical properties were determined using 

its initial values of length and radius. 

 

RESULTS AND DISCUSSION 

FE simulations were carried out using different constitutive laws, using the elastic and viscoelastic 

parameters listed in Tab. 1. The results are summarised in Figs. 4 and 5, where Figs. 4.a and 5.a. 

show the computed tensile stress variations as a function of tensile strain, and Figs. 4.b. and 5.b 

show the change in apparent tangent Young’s modulus as a function of tensile strain. Two 

experimental curves selected among a database collected during an extensive experimental 
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campaign on elementary hemp fibres, are also plotted in these figures. They reveal the strong 

discrepancies observed during the experimental campaign. Using the described model, we propose 

to assess the degree to which each physical mechanism governs the tensile response of the fibre. 

 

Elastic behaviour (E) 

When elastic behaviour is considered for the homogenized materials comprising the fibre wall, a 

quasi-linear curve is observed in the stress-strain plot. Fig. 4.b. shows that the apparent rigidity 

increased slightly when the strain was increased, from an initial modulus of approximately 40 GPa 

to a tangent modulus of 47 GPa at 4% axial strain. This stiffening is due to the structural effect 

resulting from the fibre’s cylindrical geometry, the helical organization of the cellulose microfibrils, 

and the change in cross-sectional area as a function of tensile loading. The structural effect was 

extensively analysed in a previous study (16). It can be seen that the simulated behaviour is quite 

different to that observed experimentally. 

 

Cellulose Microfibril Reorientation (MFR) 

The variations in MFA as a function of axial strain were determined using the proposed theoretical 

model. During the tensile test, the microfibrils rotated from their initial angle of 11° to an angle of 

5.7°, when placed under the greatest value (4%) of axial strain (Fig. 6). These computed values are 

in very good agreement with those measured on hemp bundles using the WAXS technique. Using 

the WAXS technique on bundle of hemp fibres, a decrease in MFA, from 10.8° to 7.8°, was 

measured when the axial strain varied from 0 to 2%. The computed values of strain, ranging from 

11° to 8°, thus lie in the same range. 

Fig. 4.a. clearly shows that when this progressive decrease in MFA is taken into account during the 

tensile test, the resulting curve has a slightly parabolic shape, which is similar to that obtained in 

part III of the experimental tensile curve. The final value of the apparent modulus (64 GPa), 
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corresponding to an axial strain of 4%, is approximately 1.6 times higher than the initial value 

(40 GPa), see Fig. 4.b. This degree of stiffening is consistent with the experimental results obtained 

by the present authors with Repeated Progressive Loading (29, 30), and is of the same order as that 

observed by Baley (6) and Silva (31), with flax and sisal fibres, respectively. 

The simulated behaviour is nevertheless quite different to that observed experimentally. 

 

Viscoelasticity 

Viscoelasticity in the case of small strain hypothesis (VE) 

The viscoelastic law was identified during an earlier experimental campaign based on a creep test 

with an elementary hemp fibre. The identified parameters are summarized in Tab. 1. On the basis of 

the axial viscoelastic compliance, only two (𝛽𝑇 , 𝛽𝐿𝑇) of the three viscoelastic parameters were 

identified. A sensitivity analysis on the TT parameter was performed. Our numerical simulations 

showed that the axial viscoelastic compliance is not sensitive to this parameter TT when its value is 

comprised between 1 and 25. An additional work based on a parametric identification with the 3D 

FE model is underway to identify the three viscoelastic parameters from experimental creep 

function. The results will be published in an upcoming article. 

Using the viscoelastic law, significant nonlinearity was revealed in the stress-strain plot (Fig. 4.a., 

VE, red curve).  

The apparent modulus decreased from 40 GPa to approximately 20 GPa during the first 2% of 

strain, and then had a slight tendency to increase beyond 2% of strain. Although the first part of the 

curve is in relatively good agreement with the upper experimental curve, the stiffening observed 

after the inflection point is not sufficient to ensure a well-adjusted fit with the experimental results. 

This result is nevertheless interesting, since the viscoelastic behaviour can to a certain extent 

explain the nonlinear tensile behaviour observed in wood or plant fibres, in particular the stiffening 

which occurs following an initial decrease in rigidity. 
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Viscoelasticity in the case of finite transformations (VE/MFR) 

When the viscoelastic behaviour of the homogenised material of the fibre wall is combined with the 

MF re-alignment phenomenon associated with tensile loading, a strongly nonlinear curve is 

obtained in the stress-strain plot (Fig. 5.a., VE/MFR). The shape of the simulated tensile curve 

(VE/MFR) is very close to that observed experimentally (Type 3). The first part of the curve is 

linear until the first yield level, beyond which a strong decrease in rigidity is observed. A second 

inflection point (corresponding to the experimentally observed point i2) appears at a higher strain 

level, and is followed by a parabolic increase in rigidity up until final failure. This result clearly 

shows that the nonlinear tensile behaviour of plant or wood fibres can be described and simulated 

by a viscoelastic law for finite transformations, and that the main source of dissipative behaviour is 

certainly viscoelasticity, rather than plasticity as proposed by some authors (13, 14). This result is in 

good agreement with our experimental observations, the time-dependent mechanisms in particular, 

and tends to validate the scenario proposed in the first part of this study. 

In a previous study, we also observed that the proportion of curves of type 3 increases significantly 

as a function of the fibre’s water content (32). It was assumed that, by plasticizing amorphous 

components of the cell wall and thereby activating their viscoelasticity, water could facilitate the 

realignment of cellulose microfibrils. Our numerical simulations clearly reveal that MF realignment 

is increased by the viscosity ratio. MF re-orientations occur more rapidly and have higher angular 

values for a given value of axial strain, when the material is assumed to be viscoelastic. As shown 

in Fig. 6, the MFA decreased from an initial value of 11° to 4.2° in the case of an axial strain of 3%, 

whereas it reached a value of only 6.7° in the case of purely elastic behaviour. 

It should be noted that the parabolic increase in rigidity which can be observed at high values of 

strain on the tensile curve (Fig. 5a) is lower than that observed for the upper experimental curve. In 
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this figure, it can be seen that a good fit is obtained (VE/MFR/C, light green curve) when the 

potential shear-induced crystallisation is taken into account.  

Fig. 7 shows the stress-strain and apparent tangent modulus – strain curves for different strain rates 

from 5.10
-5

 to 5 .10
-3

 s
-1

. As expected and as for all polymeric materials, the fibre response depends 

directly on the strain rate. Our results show that the degree of nonlinearity decreases with an 

increase in strain rate. 

 

Influence of dislocation areas on the tensile behaviour 

The influence of dislocation areas on the tensile behaviour of hemp fibres has not been fully 

characterised. In living plants, it is speculated that these have no detrimental effect, and could 

perhaps be beneficial (20). In the case of isolated fibres, no clear tendency has been demonstrated in 

the literature. At present, a small number of published results suggest that the fibre’s strength is not 

affected by an increase in the proportion of dislocation areas (33). However, experimental 

investigations are particularly difficult to implement and interpret, due to the widely scattered 

results. In the present study, it is proposed to analyse the influence of dislocations on the 

mechanical behaviour of single fibres, using the proposed model. The results of these numerical 

simulations shed new light on this topic. 

If a dislocation proportion of 25% is assumed, in association with an MFA of 30°, a strong decrease 

in apparent tangent modulus is observed (VE/MFR/C/D Fig. 5.a.). The initial modulus is 

approximately 27 GPa, and decreases to 14 GPa at 1% axial strain, following which it increases 

gradually up to 25.5 GPa at 3% axial strain. The shape of this simulated tensile curve is well 

adjusted to the lower experimental curve. In view of these numerical results, when they are 

compared with the behaviour of bulk fibre having a constant and relatively small MFA along its 

length, it can be clearly understood that the presence of dislocations leads to a significant decrease 

in the apparent stiffness of the fibres. It can thus be concluded that in the case of hemp fibres, an 

increase in the proportion of dislocations contributes to a decrease in the fibre’s apparent rigidity. 
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Fig. 8 also shows that the amplitude of the reorientations is almost twice as strong in the dislocation 

area as in the bulk area. The decrease in MFA, corresponding to an axial strain ranging from 0 to 

4%, is respectively 14° and 7.5° in these two areas. The difference in MFA in these two areas, for 

the higher strain values, is thus significantly reduced. This result is in agreement with the in situ 

PLM observation described in Part I of this study, which showed that the dislocations gradually 

disappear during tensile testing, as a result of MFA homogenization along the length of the fibre.  

When a purely elastic behaviour is considered, a significant stress concentration (Figs. 9.a. and 

10.a.), together with an increase in the axial stress gradient within the thickness of the cell wall (Fig. 

9.b.), are observed in the dislocation area. It thus seems clear that these areas could be preferential 

failure initiation zones. Conversely, when viscoelastic behaviour is assumed for large 

transformations, the axial stress level is found to be relatively constant along the length of the fibre 

(Fig. 9.a. and Fig. 10.b.), and the axial stress gradient is nearly the same in both areas. Although this 

constitutive law accurately reflects the underlying physical mechanism, it is clear that, contrary to 

all expectations, dislocation areas do not induce significant stress concentrations. This numerical 

result could provide an explanation for the absence of any statistically significant influence of 

dislocations on the experimentally observed behaviour of the fibre’s strength (33). 
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CONCLUSIONS 

The results presented in this paper show that a 3D hollow model with a fibre-reinforced viscoelastic 

constitutive law for large transformations is able to simulate the nonlinear tensile behaviour of 

single hemp fibres. Very good agreement in the curve shape is found with the experimental results. 

The model is able to successfully bound the batch of experimental curves. As hypothesised in Part I 

of this study, based on experimental investigations, the numerical results confirm the dominant role 

of viscoelastic phenomena in cellulose MF re-orientations, and the associated degree of 

nonlinearity. 

This study also highlights the influence of dislocation areas on the mechanical behaviour of single 

fibres, in particular on their apparent rigidity. Both initial and tangent apparent rigidity up to failure 

are influenced by the presence of dislocations. The results also show that when elastic behaviour is 

assumed, the induced stress concentration and gradient in the dislocation area, associated with 

viscoelastic behaviour, are cancelled. This could explain why, contrary to all expectations, 

dislocation areas are not preferential areas of failure initiation. 

The next parts of this paper series on the tensile behaviour of plant fibre will be focused on the 

modelling of other tensile responses, such as Type 2, and also to the modelling of tensile unloading 

with irreversible residual strains. The implementation of damage laws and visco-plastic mechanisms 

constitutes an interesting track to explore this subject. It could also be interesting to evaluate the 

influence of morphological aspects (such as non-unity transverse aspect ratios, discontinuities in the 

cross-section shape and size along the fibre length and so on) on the tensile response, the ultimate 

goal being to use the real 3D morphology of a single isolated fibre. 
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Figure 1: Spectral model for the release times 
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Figure 2: Identification of the viscoelastic parameters – comparison between the experimental 

and fitted curves. 
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Figure 3: Theoretical variation of the microfibril’s orientation after loading.  
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Figure 4. a. Stress-strain curves. b. Apparent modulus – strain curves. The curves are 

computed for different constitutive laws: E (Elastic), VE (Viscoelastic), MFR (microfibril 

reorientation). Two experimental curves selected among our database are also shown. 
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Figure 5. a. Stress-strain curves. b. Apparent modulus – strain curves. Computed curves for 

different constitutive laws: VE/MFR (Viscoelastic and Microfibril reorientation), VE/MFR/C 

(Viscoelastic and microfibril reorientation and stress-induced crystallisation), VE/MFR/C/D 

(Viscoelastic and Microfibrils Reorientation and stress-induced cystallisation with a 

dislocation area). The two experimental curves selected among our database are also shown. 
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Figure 6: Computed MFA as a function of axial strain for two constitutive laws: elastic (E) 

and viscoelastic (VE). 
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Figure 7. a. Computed stress-strain curves. b. Apparent tangent modulus – strain curves. The 

curves are computed for different strain rates from 5.10
-5

 to 5 .10
-3

 s
-1

.  
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Figure 8: Computed MFA as a function of axial strain for two fibre areas: bulk fibre and 

dislocation area, using the VE constitutive law. 
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Figure 9: Computed axial stress as a function of axial position (a) and radial position (b), for a 

single fibre with a dislocation area (dislocation area: 25% of the fibre, MFAbulk fibre: 11°, 

MFAdislocation: 30°, based on the use of two different constitutive laws: E and VE/MFR/C. 
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Figure 10: Computed tensile stress and strain fields for a fibre including a dislocation area 

(dislocation area: 25% of the fibre, MFAbulk fibre: 11°, MFAdislocation: 30°), assuming two 

different constitutive laws: E (a.) and VE/MFR/C (b.). 
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Table 1: Values of the model parameters used in the FE computations. 

 

Elastic parameters Viscoelastic parameters 

EL 75 000 MPa 𝛃𝐋𝐓 12.25 

ET 11 000 MPa 𝛃𝐓 1.5 

νLT 0.153 znc 2.45 

GLT 2 520 MPa zn0 1.9 

νTT 0.2   

 

 


