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Abstract— One of the greatest challenges in microrobotic is to
handle individually a large number of objects in a short time,
for applications such as cell sorting and assembly of micro-
components. This ability to handle a large number of micro-
objects is directly related to the size of the microrobot. This
paper proposes a theoretical study of the size of a magnetic
microrobot maximizing its capacity of displacement. It demon-
strates that there is an optimal size can be obtained, due to a
trade-off between the inertial and the viscous effects. Analytical
expressions of the optimal size and the related frequency of
motion are derived from a simplified model to highlight the
influence of the geometrical and the physical parameters of the
magnetic manipulation system such as the viscosity of the liquid
and the size of the workspace. A numerical simulation validates
the analytical analysis and demonstrates a high displacement
capacity of the microrobot (around 100 back and forth motions
per second for a robot of around 20 µm in water).

I. INTRODUCTION

Magnetic actuation is used to control robots for a wide
range of applications, such as minimally invasive medical
procedures [1], cells manipulation [2], [3], [4] and parallel
assembly at the microscale [5]. They are based on the use
of an artificial magnetic structure called microrobot that
can be powered and controlled by a magnetic source [1],
[6], [7]. The size of the microrobots ranges from a few
micrometers to a few millimeters.

The magnetic microrobots are promising solution to
manipulate micro-objects with high precision and rapidity.
Indeed, thanks to the development of microfabrication
techniques, many complex forms are manufactured (star
shape, U shape, rectangular shape, etc.) [6], [7] and
investigated on the precise positioning of objects [8].
In addition, the ability to handle (position, move, sort,
characterize, etc.) a large number of micro-objects is
crucial. For example, biologists would greatly benefit from
a microrobotic system able to characterize and to sort each
cell of a whole population individually according to its
mechanical and/or electrical properties. The number of
cells in a population can reach several millions. Sorting a
whole population thus requires to perform a large number
of elementary operations, such as positioning and moving,
per second. This is directly related to the ability of the
microrobot to perform a large number of back-and-forth
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motions per second in its workspace.

No matter its geometrical shape, this dynamic capacity of
displacement depends on the size of the microrobot. Indeed,
the behavior of a small microrobot is ruled by viscous
forces, whereas inertial effects limit the velocity of large
microrobots. Therefore, there is an optimal size maximizing
the dynamic capacity of displacement.

In this paper the size of the microrobot maximizing
the dynamic capacity of displacement is determined. The
optimization method can be applied for different shapes of
microrobot, but in this work the method is illustrated for a
spherical geometry of microrobot. An analytical expression
of the optimal size and its related capacity of displacement
are derived based on a simplified model. It highlights the
influence of the geometrical and physical parameters of the
non contact magnetic system on the dynamic capacity of
displacement. A numerical simulation is performed to solve
the dynamic model of motion without these assumptions to
validate the analytical results. It shows good agreement with
the analytical expressions. This paper demonstrates that a
magnetic microrobot of a size of a few tens of micrometers
can perform more than 100 back-and-forth motions per
second in its workspace. This work will enable to develop
magnetic devices with high capacity of displacement that
can be used in the future for any application requiring the
handling of a large number of micro-objects.

This paper is organized as follows. In Section II the motion
of a ferromagnetic microrobot driven by a magnetic force
is modeled. In Section III the analytical expression of the
optimal size of the robot is derived based on simplifying
assumptions. A numerical simulation which does not require
such assumptions is performed in Section IV to validate
the analytical approach. Conclusions and perspectives of this
work are discussed in Section V.

II. DYNAMIC MODELING

A. Non contact magnetic actuation system

Most of the magnetic actuation systems present similar
designs [9] based on several coils. The optimization method
proposed in this paper is illustrated on a magnetic device
based on four coils using direct propulsion (the movement
of the microrobot is produced by the magnetic force). The
two pairs of coils enable controlled in-plane displacements
(see Figure 1). The microrobot is composed of a ferro-
magnetic material since its magnetization is higher than



paramagnetic or diamagnetic materials, leading to higher
magnetic forces and thus higher velocities [6]. It is placed
in a workspace filled with a liquid. An ambient environment
would present a smaller viscosity but the adhesion force
between the robot and the substrate would be high, leading
to a poor reproducibility of the control. In addition most
of the current systems are in liquid environments since it
enables biomedical applications [8], [7], [10]. The workspace
is located in the center of the magnetic actuation device. A
non uniform magnetic field is created by applying a current
in the coils. The size of the workspace is closely related to the
size of the robot. At the microscale practical considerations
also limit the size of the workspace since imaging small
particles necessitate a high magnification lens which presents
a small field of view. In that work it will be considered that
the size of the workspace is proportional to the size of the
robot.

Workspace

Coil

Mobile support

Fig. 1. Non contact magnetic actuation device: four coils create a magnetic
force to control the position of the robot. They are placed on a mobile
support to adapt the gap between the coils to the size of the workspace.

To determine the size of the microrobot that enables
the highest dynamic capacity of displacement a reference
trajectory along one axis will be considered (see Figure 2).
The microrobot is placed at one extremity of the workspace,
on the coil axis (o,~x) (position A). It is first moved to position
B, at the other extremity of the workspace, using the coil
1. Then it is moved back to position A using coil 2. It is
considered that the same time T is needed to perform each
trajectory A→ B and B→ A. The total trajectory is thus
performed in a time 2T .

The microrobot used is spherical (radius r) and composed
of ferromagnetic material. The workspace is located at a
distance d from the coils. Its size w is proportional to the one
of the microrobot: w = ar. Two criteria are used to evaluate
the performance of the microrobot: (i) the average velocity
Vm needed to perform the round trip A→ B→ A, (ii) the

related frequency of motion f =
1

2T
:

Vm =
x(T )

T
=

ar
T
,

f =
1

2T
=

Vm

2ar
.

(1)

A dynamic model will be derive to determine these two
criteria with respect to the radius r.

Fig. 2. Side view of the magnetic device: A reference trajectory along
one axis is considered to evaluate the performance of the microrobot. The
microrobot is placed at one extremity of the workspace (position A) and it is
moved to position B, at the other extremity of the workspace, using the coil
1. It is then moved back to A using coil 2. a: scale factor, d: offset distance,
r: radius of the microrobot, T : time needed to perform the trajectory A→ B.

B. Dynamic model

Since the displacement A→B and B→A is symmetric the
analysis will be focused on the motion created by one coil
only. Figure 3 shows the configuration of the system when
the coil 1 is switched on.

The forces applied to the microrobots are: (i) the magnetic
force produced by the coils, (ii) the drag force, (iii) the
gravitational force compensated by normal force of the
substrate. It is assumed that the adhesion force between the
microrobot and the substrate is negligible since it is in liquid
environments.

The magnetic force ~Fm applied to a ferromagnetic spheri-
cal microrobot, is given by [11]:

~Fm =
4
3

πr3(~M.∇)~B, (2)

where ~B is the external magnetic field vector which depends
on the position of the microrobot (x,y,z) and the current
applied in the coils, ~M is the magnetization vector and r is the
radius of the microrobot. Soft magnetic materials (e.g: nickel
and iron) are characterized by their low coercivity (Hc <
103 A/m). They can be easily magnetized by external fields
[11]. It is thus assumed in this work that the magnetic field
produced by the coils induces values of external excitation
H higher than Hc, and thus that the ferromagnetic material is
saturated. This hypothesis will be discussed in the numerical
analysis.

The drag force applied to a spherical microrobot depends
on the density of the fluid ρ f and its dynamic viscosity η.
For Reynolds numbers smaller than 1000 it is defined by the
Schiller-Naumann model [12]:

~Fd =−k1~V − k2 ‖~V ‖1.687

(
~V
‖~V ‖

)
, (3)

where k1 = 6πrη, k2 = 1.448πr1.687η0.313ρ0.687
f and

t~V = (ẋ, ẏ, ż) is the vector representing the velocity of the
microrobot.

Using the second Newton’s law and a projection along the



Fig. 3. Configuration of the system when the coil 1 is actuated : the
workspace is located at a distance d from coil 1 and the microrobot moves
under the action of the magnetic field B to cover the distance w = ar from
A to B. Fm and Fd are the magnetic and the drag force respectively.

(o,~x) axis, the motion the microrobot is given by:

mẍ = Fm (x, i)+Fd (ẋ) , (4)

where m is the mass of the microrobot, ẍ is its acceleration
and i is the current applied in the coil. Based on equations
(2), (3) and (4) the motion of the microrobot is ruled by:

ẍ+
(

1
τ1

)
ẋ+
(

1
τ2

)
ẋ1.687 =

(
Ms

ρp

)
∂B(x, i)

∂x
, (5)

where τn =
m
kn
, n= (1,2), ρp is the density of the microrobot

and Ms is the value of the saturated magnetization of the
microrobot.

The behavior of the microrobot is given by equation (5).
In order to study the impact of the microrobot size on the
dynamic behavior, analytical resolution of the equation (5)
will be performed under some assumptions in Section III.

III. ANALYTICAL ANALYSIS OF THE EQUATION OF
MOTION

In order to derive an analytical expression of the average
velocity Vm and of the motion frequency f defined in
equation (1) from the dynamic model (5) some assumptions
must be made:

1) The fluid flow is considered as a Stokes flow, thus the
drag force is given by :

Fd(ẋ) =−6πrηẋ =−k1ẋ. (6)

2) The magnetic field gradient is considered linear in
function of the input current i [13]. Thus the variation
of the magnetic field B as a function of the position x
of the microrobot can be expressed using the Maxwell
equations as follows:

∂B(x, i)
∂x

= i.g(x), (7)

where g(x) is a function that characterizes the non
linearity of the magnetic field gradient ∇B with respect
to the position x.

3) The magnetic field gradient is considered to be linear
around the operating point (x0 = d+ar, i = i0). Thus,
based on a Taylor expansion, the linearized expression
of (7) is given by:

∂B(x, i)
∂x

' (x− x0)
∂(i.g(x))

∂x
|(x0, i0)+ i.g(x0) (8)

= (x− x0)
∂2B(x, i)

∂x2 |(x0, i0)+

(
i
i0

)
∂B(x, i)

∂x
|(x0, i0).

(9)

These assumptions will be discussed in Section IV. The
analytical results will be compared to the numerical simula-
tions of the equation of motion performed without making
these assumptions. Based on the above equations the simpli-
fied dynamic model obtained is expressed as follows:

∆ẍ+
(

1
τ1

)
∆ẋ−α∆x = βI, (10)

where: 

α =

(
Ms

ρp

)
∂2B(x, i)

∂x2 |(x0,i0) > 0,

β =

(
Ms

ρp

)
∂B(x, i)

∂x
|(x0,i0) < 0,

I =

(
i
i0

)
and ∆x = x− x0.

(11)

The parameters α and β define the intensity of the mag-
netic force which depends on the operating point.
In order to create the magnetic force, the current in the coils
is controlled. Several signals of current can be applied to
perform the trajectory A→ B. In this work a constant value
of current is used to illustrate the optimization method. Using
the Laplace transform then its inverse properties, the position
x(t) when the input current is i = i0 is given by:

x(t)= x0+
β

λ+−λ−

[(
exp(λ+t)−1

λ+

)
−
(

exp(λ−t)−1
λ−

)]
,

(12)

where λ(+,−) =
−1∓

√
1+4ατ12

2τ1
are the poles of system.

Equation (12) presents two behaviors for spheres of small or
large radius detailed in the following paragraphs. The optimal
radius rop can be approximated by the limit between these
two behaviors.

A. First behavior - small radius

When the radius r of the microrobot tends to 0, the
position x(t) can be simplified as follows:

x(t) = x0 +
β0

α0
(exp(α0τ1t)−1) , (13)

where α0 and β0 are respectively the values of α and β

when x0 = d. This expression represents the solution of the
dynamic model given by:

1
τ1

∆ẋ−α0∆x = β0I. (14)

This equation could also be obtained from the general
dynamic model (10) by neglecting the inertial term. It can



be concluded that the inertial force is negligible for small
microrobots.

Based on the Taylor expansion exp(h)'1+h and the ex-
pression of τ1 and β0, the average velocity and the frequency
of the motion can be expressed as follows:

Vm '−β0τ1 =

(
−

2ρpβ0

9η

)
r2 and f '

(
−

β0ρp

9ηa

)
r. (15)

Note that β0 < 0 ( see (11)), Vm and f are positive functions.
The modification of the workspace size (parameter a) does
not change the average velocity. This is due to the high dy-
namic behavior: the microrobot reaches a permanent velocity
instantaneously because the inertial force is negligible. The
frequency of motion f decreases while the workspace size
increases, and it increases linearly with respect to the radius
of the microrobot.

B. Second behavior-large radius

Using an asymptotic expansion of the poles λ+ and λ−

for a high radius, x(t) can be expressed as follows:

x(t) = x0 +
β

α

(
cosh(

√
αt)−1

)
. (16)

This expression represents the solution of the dynamic model
given by:

∆ẍ−α∆x = βI. (17)

This model can also be obtained from the general dynamic
model (10) if the viscous force is neglected. It can be
concluded that the viscous force is negligible for the spheres
with a large radius.

Based on the Taylor expansion cosh(h)'1+
h2

2
in (16)

the average velocity and the frequency of motion can be
expressed as:

Vm '
√
−βar

2
and f '

√
− β

8ar
. (18)

Note that β < 0 (see (11)), Vm and f are positive func-
tions. The average velocity (resp. the frequency of motion)
increases (resp. decreases) with respect to the workspace size
and the microrobot radius.

C. Optimal radius

Two different behaviors can thus be derived from equa-
tions (15) and (18): for small radius microrobots the fre-
quency of motion f increases when the radius r increases
(equation (15)) while for large ones the frequency decreases
when the radius increases (equation (18)). The maximum
frequency of motion is obtained for an optimal radius rop
which is approximated by the intersection of the curves of f
for the small and large radius. Based on (15) and (18), the
values of this optimal radius can be computed by solving the
equation:

8(β0ρp)
2r3 +81η

2aβ = 0. (19)

To get an analytical solution of this equation (19), the
approximation that the magnetic field gradient is constant

is made, with β = β0. This approximation will be discussed
in the next section. Under these conditions the optimal radius
can be expressed by:

rop =

(
−81aη2

8β0ρ2
p

)1
3
. (20)

TABLE I
NUMERICAL VALUES USED FOR THE SIMULATIONS

Microrobot Medium
Material: nickel - Liquid: water
ρp = 8902 (kg/m3) ρ f = 1000 (kg/m3)

Ms = 4.77105 (A/m) η f = 10−3 Pa.s
- Liquid: blood
ρ f = 1066 (kg/m3)

η f = 6.10−3 Pa.s

Using the parameters presented in Table I and for a
workspace size that is ten times the dimension of the micro-
robot (a = 10), placed at a distance d = 4 mm of the coil and
for a magnetic field gradient ∇B = 3 T/m (which represents
β0 =−160 mATkg−1 from (10)), the optimal radius is 20 µm
in water and 67 µm in blood. This radius of a few tens of
micrometers offer the possibility to manipulate objects in
microscale, for different applications such as cell sorting or
conveying of artificial micro-objects.

IV. NUMERICAL STUDY OF MOTION

The analytical analysis has highlighted two typical behav-
iors, for small and large microrobots. The influence of the ge-
ometrical and physical parameters of the magnetic actuation
system has been derived, and the expression of the optimal
radius has been determined. However several assumptions
and simplifications have been made. This section presents
the numerical analysis of the dynamic model defined in (5),
taking into account the actual magnetic field gradient and
the Schiller Naumann model of the flow, to evaluate the
relevance of the analytical results.

A. Experimental identification of the magnetic field

In order to perform the numerical simulation, the magnetic
field gradient must be determined. Most of the magnetic
manipulation systems use ferromagnetic core coils for which
there is no analytical expression of the magnetic field. An
identification of experimental measurements of the magnetic
field is performed in this paper. Alternatively finite element
modeling could be used.

Figure 4 shows the experimental system used to measure
the magnetic field along the axis of the coil. Measurements
were made using a teslameter (F.W Bell, Model 7010) which
is based on the use of an Hall probe to measure the intensity
of the magnetic field. The distance between the coil and
the probe is controlled by a 3-axis manual manipulator



(Newport Corporation). The current applied to the coil is
set to 0.4 A which is a typical value for the setup. Figure 4

Fig. 4. Experimental setup used for the magnetic field measurement
along the coil axis: an Hall sensor measures the magnetic field. A 3 axis
manipulator controls the distance between the coil and the magnetic probe.

shows the experimental measurements. The minimum value
of the magnetic field is measured at a distance of 10 mm
from the coil and is about 2.9 mT. Therefore, the minimum
external induction is about 2308 A/m which is greater than
the value of the coercive induction for a nickel sample
[14], [15]. The magnetization of the nickel sphere is thus
saturated in the whole workspace. To calculate the magnetic
gradient field from the magnetic field measurements the
experimental measurements are approximated by a fourth
order polynomial, which is then differentiated.

B. Simulation of the motion of the microrobot

The motion of the microrobot is analysed using a nu-
merical simulation software (Matlab) based on the dynamic
model (5). The numerical values used are given in Table I.
Figure 5 represents the frequency of motion f simulated for
a scale factor a = 10 and an offset distance d = 4 mm. This
numerical solution is compared to the analytical solutions
(15) and (18) developed in Section III also represented in
Figure 5.

The trends of the analytical solution derived for small and
large radius microrobots are similar to the numerical simula-
tion. The main results of Section III are thus confirmed: (i)
for small microrobots the inertial force is negligible, and (ii)
for large microrobots the viscous force is negligible. Several
reasons can explain the differences between the analytical
and the numerical solutions. The first one is that the magnetic
field gradient has been considered as constant to derive the
analytical solution. The second one is that the inertia of the
liquid is neglected in the simplified dynamic model. The
model can be improved by considering a converted mass
of the microrobot in (17).

The optimal radius obtained by the numerical simulation
is equal to 22 µm in water and corresponds to a maximum
frequency fmax = 127 Hz. A ferromagnetic microrobot of
22 µm size will be able to perform 127 cycles of back-and-
forth motion per second in its workspace, and thus to handle
a large number of micro-objects individually in a short time,

for applications such as assembly of microcomponents and
cell transportation.
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Fig. 5. Frequency of motion f derived by the analytical and the numerical
approaches. The maximal frequency derived by the analytical approach
fmax = 306 Hz is obtained for an optimal radius rop = 20 µm. The numerical
simulation gives a maximal frequency fmax = 127 Hz for an optimal radius
rop = 22 µm. Trends of the curves and order of magnitude of the frequency
and of the optimal radius are thus similar.

Figure 6 shows the analytical curves and the numerical
values of the optimal radius calculated for different geome-
tries of the workspace (parameters a and d). Based on the
analytical expressions (15), (18) and (20) the increase of the
scale factor a decreases the maximum frequency of motion
but increases the value of the optimal radius. If the distance d
between the coil and the workspace increases the microrobot
is subject to a lower magnetic field gradient (β and β0
decreases when d increases). According to (15), (18) and (20)
the frequency f will decrease while the optimal radius will
increase. The numerical simulation confirms these trends.
However, the difference between the analytical curves and
the simulated values of the optimal radius is important for
large scale factors. Indeed, the analytical results are obtained
assuming small displacement around the initial position (x =
d +ar), which holds only for small scale factors.

The use of different liquid environments changes the
behavior of the microrobots due to the modification of
the dynamic viscosity η. Figure 7 illustrates this result.
For viscous environments the response time of the system
increases (the acceleration decreases) which corresponds to
slower motions. Thus, the average velocity Vm and the motion
frequency f decrease. The simulated results show that the
optimal radius for a blood environment is equal to three times
the one for a water environment. This is in good agreement
with the analytical expression (20) since a factor of 3.3 was
predicted by the term η

2
3 .

The numerical simulation has thus confirmed the trends of
the analytical expressions obtained from a simplified model.
These expressions can be used to derive rules to develop
microrobots for high throughput handling of micro-objects.

V. CONCLUSION

In this work a general approach has been proposed to
optimize the size of a ferromagnetic microrobot aiming to
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maximize its dynamic capacity of displacement. The opti-
mization method presented in this paper can be applied for
different shapes of microrobot, but it has been illustrated for a
spherical microrobot. The analytical approach demonstrates
that there is a trade off between the viscous forces ruling
the behavior of small microrobots and the inertial effects
limiting the motion of large ones. An optimal radius of a few
tens of micrometers approximated by the limit between the
two behaviors has been derived. The frequency of motion
obtained for the microrobots of optimal size is more than
100 Hz, which is highly promising for applications that
necessitate to handle a large number of micro-objects. Good
agreement between the analytical approach and the simula-
tion results (that do not assume neither a constant gradient
magnetic field nor a Stokes flow) is highlighted, which
validates the approximation made in the analytical analysis.
The influence of the scale factor, the offset distance and the
dynamic viscosity has been studied. This theoretical work
shows a general method that can be applied to identify the
best microrobot size when developing a wireless magnetic
device. Therefore, the magnetic device can be used for any
application requiring to handle a large number of objects,
such as cells sorting for example.

This modeling and simulation work is a preliminary work,

which will be validated experimentally in future works using
microrobots with sizes ranging from a few micrometers to
several hundred micrometers with different shapes.
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S. Régnier, “First experiments on magpier: a planar wireless magnetic
and piezoelectric microrobot,” in IEEE International Conference on
Robotics and Automation, 2011, pp. 102–108.

[7] C. Pawashe, S. Floyd, E. Diller, and M. Sitti, “Two-dimensional
autonomous microparticle manipulation strategies for magnetic mi-
crorobots in fluidic environments,” IEEE Transactions on Robotics,
pp. 467–477, 2012.

[8] M. S. Sakar, E. B. Steager, A. Cowley, V. Kumar, and G. J. Pappas,
“Wireless manipulation of single cells using magnetic microtrans-
porters,” in IEEE International Conference on Robotics and Automa-
tion, 2011, pp. 2668–2673.

[9] S. Bouchebout, A. Bolopion, J.-O. Abrahamians, and S. Régnier, “An
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