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Abstract

This paper deals with modeling and model reduction methods intended to sandwich structures
with viscoelastic materials. For the modeling step, it is carried out by combining the First
Order Shear Deformation Theory (FSDT) with the Golla-Hughes-Mc Tavish (GHM) model.
The GHM model introduces auxiliary coordinates to take into account the frequency
dependence of viscoelastic materials which combined to the Finite Element Method (FEM)
leads to large order models. This paper focuses on the use of model reduction methods. The
reduced models compared to the full model are illustrated by three numerical examples in
order to outline the performance, the practical interest of these methods and their validity
domains.
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Highlights

e The combination of First order shear deformation theory (FSDT), the Golla Hughes
Mc-Tavish (GHM) viscoelastic model with the model reductions methods is
developed.

e Proposed reduction methods for viscoelastic sandwich structures are implemented in
the Finite Element codes.

e A focus on the Guyan reduction method shows the practical interest of this method
expanded to viscoelastic sandwich structures.

e The potential of the GHM model is higlighted in time domain analysis notably with

introduction of local nonlinearities.
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1. Introduction
The use of viscoelastic [1, 2] sandwich structures [3] been regarded as a convenient
strategy for many industries such as aeronautics, marinesdachotives. In fact, these
structures present a high way of vibration control in term dftwegight and high specific
stiffness especially when they incorporated viscoelastterials.
Several theories [4-7] were developed in order to approximataliipgacement and the
mechanical deformation of such structures. One of thekmellvn and useful theories is the
classical theory of plates (CPT) which assume that a plact@s initially normal to the
midsurface before deformation remains plane and normal to uHace after deformation.
Hence, this theory neglects the effect of shear deformationieansl to inaccurate results for
laminated plates. So, it is obvious that transverse sheamusfons have to be taken into
account in the analysis. Thus, the first order shear deformatamnyt (FSDT) introduced by
Reissner and Mindlin [4, 7] takes into account this effect andrassa linear variation of the
midplane displacements through the thickness of the structureméti®d has a significant
advantage due to its simple implementation and low computational/Atusther laminated
theory based on Reddy’s refined [8] high order shear deformations t(l¢8DT) which
includes both bending and shear effects was been carriedfeerr@ira et al. [9], Chugal and
Shimpi [10] studies. Unfortunately, this method requires a promgbitomputational time
which is undesirable of such applications. Some others researéfiers?] have used the
Layerwise theory for modeling the sandwich structures. Inddas, theory assumes a
displacement field in the form of zig-zag along the thicknesthefstructure allowing a
kinematic description of each layer as a piecewise linearifunsctin addition, this theory is
applicable for both thin and thick structures. Nevertheless, whestubg is intended to thin

structures, the first order shear deformation theory (F§idd9ents a suitable choice for the
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modeling of sandwich structures favored by its simple implementai the most of finite
elements codes.

However, these structures exhibit viscoelastic damping wloohbme viscous and elastic
character. Hence, this dual character leads to a congalib&havior which requires a correct
modeling approach. More recently, Golla, Hughes and Mc TavishLf3)ave proposed the
so called GHM model. This model provides an effective methodhaihiudes viscoelastic
damping through the addition of auxiliary coordinates called digsipaoordinates as a sum
of elementary mini-oscillators.

Furthermore, the GHM model combined to the finite element mg#iel) [15], allows the
introduction of viscoelastic material properties through elenmmeass, stiffness, and damping
matrices. The addition of internal mini-oscillators for eadteelastic finite element allows a
general description of frequency-dependent viscoelastic matgniaperties behavior. The
main advantage of this method consists in its efficient modaifngiscoelastic material
behavior; but its major lack is the largely finite elememehsion system which requires a
prohibitive computing time. Consequently, a model reduction should beedpi the
augmented GHM model.

The present paper proposes an alternative of model reduction snamioy16, 17], Guyan
[18, 19], modal and modal in physical space (SEREP) [20-23ktiedumethods for this
problem. The first one based on the elimination of unwanted varjgidestioned the full
degree-of-freedom (dofs) into master and slave dofs; uses thd progarties of the slave
part of the structure when the master dofs are groundedeH#wecderived slave modes are
operated to enrich the dynamic basis leading to a drastic redustithhod. The simplest, yet
very useful model reduction method is the well-known Guyan reductietmad. It is a
particular case of dynamic reduction method according to whichéna associated to the

slave coordinates is neglected; only master dofs are rétdihereby, the unwanted variables
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are removed leading to reduced model which is a subset of theabsgstem in a restricted
range of frequency. However this method is limited by itsditglidomain [24, 25]. Another
reduction method is the frequently used modal reduction method accoodinbich the
derived modes associated to the undamped structure are incaitpordbe GHM damped
model yielding to an exact transformation basis. This basisutestcorrectly the undamped
modes of the original system leading to a drastic reductionnidtal reduction method can
be expanded the projection from generalized coordinates systédm physical coordinates
system leading to another strategy of reduction called modaktien in physical space
method. This method restitutes also the first modes of the ywethstructure and partition
the modal basis into master and slave dofs. This leads ¢evat@ases which will be tested
examining both the number of retained modes and the numberstémadofs.

In other hand, the modeling of viscoelastic sandwich structurss atimacted many
researchers, but only a few papers have dealt with the @iddiel [26, 27]. However, these
papers remain limited in the most to frequency domain analyismajor uses of the space
state modal reduction method for model reduction. In fact, Trindadé [28], De Lima and
Rade [29] was used frequently the modal reduction in their studieonsists to transform the
second order equation of motion into an equivalent first-order fopacésstate model).
Unfortunately, this method leads generally to a space stadielnof dimension at least the
double of the total dimension of the GHM model (2N) and the quadruplensiomeof the
structural dofs which requires a prohibitive time of calcalsi

Therefore, the application of the proposed reduction methods, ahecbften used with the
undamped structures, combined to the GHM model is an ability to tadeftects of
viscoelastic components to the sandwich structures without immgeide order of the finite
element models. Furthermore, these reduction methods can be ap@adiwich structures

described kinematically by the others mentioned theories.
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In this paper, both the theory related to the iiq@atation of the FSDT theory combined to
the GHM method and the theory related to its radacimethods is presented. Numerical
simulations applied to beam, plate and non-linesembled beams in both frequency and
time domains are also illustrated. These exampiésighlight the performance of reduction
methods and its practical interest in the dynamalysis of viscoelastically damped sandwich
structures.
2. Three-layer viscoelastic finite element model

Multilayer structures are typically used for itgHt-weight, high specific stiffness and strength
values in many engineering fields. In fact, there attempts to replace components with
classical materials (steel, concrete) by laminateaterials notably sandwich structures.
Hence, the modeling of such structures has beeaartaylar interest of many studies [7, 9-

11]. In this paper, the considered sandwich strectis constituted by three laminated

materials: a core generally formed by viscoelastiaterial of thickneds., incorporated
between two elastic faces of thickndgsand h, respectively. The studied sandwich panel is

assumed to have a length L, width b and total tieskh as shown in Fig.1.
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Fig.1. Sandwich structure geometry



The modeling process of the three-layer sandwich structurasisdbon the following as-
sumptions:

* The sandwich is a laminate made of a stack of permanemtipined layers. No slip
or delamination between the layers, they are perfectly bondede@antly, the
continuity of displacements along the interfaces betweelaylees is considered.

» The sandwich is a homogeneous material on a macro scale levéls pubperties
depend in turn on the properties of each layer.

The lamina are macroscopically homogeneous, isotropic and iredastic.

» Both extensional and bending deformations are considered.

It should be noted that when the lamina core is made of vistioefaaterial, an appropriate
model will be used to model such behavior.

The kinematic model of the sandwich structure is based on shesliear deformation theory
(FSDT) of Reissner—Mindlin [4, 7], which assumes that a pt&aotion and perpendicular to
the midplane of the structure before deformation remains plane butnecsssary

perpendicular to the midplane after deformation. This theory takesiccount the effect of
transverse shear deformations in both faces and core. Himecejsplacement field of a

sandwich laminate structure can be expressed as:

u(xy,z,t)=u, (x,y,t)+ 24, (x,y t)
V(X Y,z =V X,y )+ 2, X,y ) (1)
WX, Y, Z,8) =W, (X, 1)

Where:
u, vand wrepresent the displacements along the axes x, y and z respeat, (X, y,t),
v, (X, y,t) and w,(X, y,t)denote the corresponding midplane displacements inxheg ,(z)

directions.

zis generally the thickness of the structure along the(axis
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¢, (x, y,t)andy, (x,y,t) are the rotations of normals to midplane abouythed x axes.

This theory is well applicable for thin and modetat thick plates and allows the
compromise: good capacity of prediction/moderatemmatational time for large
manufactories investigations. Besides, it offeesféasibility of easy implementation in many
Finite Elements codes.

Thus, the Finite element formulation uses an emglite shell finite element with five dofs per
node called Serendip element [15]. The choice isf ¢lement is based on the investigations
realized by Chee [30] which proved that this elehpeavide an excellent performance for the
modeling of composites structures notably sandwichctures. Furthermore, this element is
adapted for the majority of laminated theories,eesly First order Shear Deformation
theory (FSDT).

It is a quadratic element belonging to isoparameattements family and it uses a bilinear

shape functions whose coordinates in elementaryaaad system are presented as follows:

y n
[ x 7(0.1)
4(x,.7,) @ 07(47 ") @3(x,.7,) 4(-L1) @ » o 3(L1)
6(x, Vs 6(1,0)
8(xe.7,) P o( J>) X 8(-1.0) P —> &
1('\.14'1) e @ ® 2("}*3'1) 1(_L_l). 9 ® 2(1*_1)

5(x5.5)

Fig.2. Serendip finite element in: (A) elementary cooalas, (B) local coordinates



Therefore, the displacement field can be discretizedcal lmoordinates as follows:

u(é,n,zt)

V(fﬂ’ Z't) = [ A(Z)](3><5) |: N (5’,7)](5x4o){ue ( )} (40<3) @
w(&n,z)

Where:[ A(2)] , . is the matrix of z coordinates along the thickness Ekh(;f,ﬂ)]( is the

(3x5) 5x40)

shape functions matri>{;ue(t)}( is the elementary nodal displacement vector.

40x1)
Based on the hypotheses of the stress-states assumed foryeactinéastress—strain relations
can be obtained and kinetic energies of the sandwich plate éleinent are formulated [31].
Then, the variational Hamilton principle is used consideringnibgal displacements and
rotations as generalised coordinates leading to derive the elestifiness and mass matrices

as follows:

[M.]= [ o [N] [A] [A][N]aV, 5

(3b)

kJ=3 | | T (B [e]  181+[8] [c:]" 6] scznae

k=L g=-1p5-125,
Where: the subscripk denotes thek™layer of the laminated structurep™is the
corresponding lamina densitylN denotes the number of laminated layers. Herdhis
considered equal to %, denotes the thickness of th& sandwich layer|B Jand B,] refers

to the strain—displacement matrices where the extensiomalingg plan shear and transverse

shear effects are uncoupled separately.
k k . . .
[Cj]( "and [Cs](  refers to the strain—stress matrices associated tol@gehk where the

extensional, bending, plan shear effect (subscript b) and traessieear effect (subscript s).

dV, Indicates the elementary variation volume anid the Jacobian matrix.



After derivation of the element mass and stiffness matrice@ng the Gaussian quadrature
integration, the corresponding global matrices are assembtdedrating for the connectivity
using the standard assembling procedure and the equation of matiotanfiped structure is

established as follows:
[M]{a} +[K]{a} ={F} @)
Where: [M]|OR™™ is the mass matrix (symmetric and positive definif&] JR""is the

stiffness matrix (symmetric and nonnegative defini{ei}, is the displacements vector and

{F} ORis the external load vector.

Nevertheless, when the sandwich structure is made of \asticematerial, this equation of
motion is unable to describe the frequency-dependence of suchatsatedeed, it omitted
the damping effect. Hence, the use of consistent model azrossad range of frequencies
should be considered.
Several approaches are presented in the literature toib@edbrs behavior such as the
Anelastic Displacement Fields model proposed by Leisuture [32ktiBnal derivatives
models proposed by Bagley and Torvik [33] and especially the Golignés-Mc Tavish
(GHM) model [13, 14]. Hence, the GHM model can be develdpedlirect incorporation
into the finite element method.

3. GHM viscoelastic approach
For a sandwich structure incorporating viscoelastic matetiaés,stiffness matrix can be

decomposed as follows:

[K]=[K]+[K (9] ©

Where[K,]is the stiffness matrix corresponding to the purely elasteréagnd K, (s)] is the

stiffness matrix associated to the viscoelastic layer.ifitlasion of the frequency-dependent



behavior of the viscoelastic material can be made by gt’mgn[ Kv(s)] for specific types of

elements (beams, plates...) considering initially constatuth(E (s) orG(s)). Then, using

the elastic-viscoelastic correspondence principle [34, 35etheoduli are factored out of the

stiffness matrix reflecting the frequency dependencesaioglastic materials.

Hence, the viscoelastic stiffness can be written as:
[K, (9] =G(s)[ K, ] (6)
Golla-Hughes and Mc Tavish [13, 14] introduced the so called GHidelnto describe the

shear modulus of viscoelastic structure as a serie of ntilladsr terms:

_ & §+2{,ws
e(s) _Go(l-l-iZ:l:a,i 5 +25ia4$+af]

(7)

Where: G,is the static modulussis the Laplace complex variablep({,,«) are the
parameters of the ith mini-oscillator, anbl;is the number of mini-oscillators. The

parameters & ,{;, &) are identified from the experimental fit curves of theresponding
viscoelastic material [26, 34]. In fact, different viscatilamaterials have different frequency

dependence and so have a different number of t&gof the GHM fit.

Substituting Eq. (6) into Eq. (5) and replac®() by its expression, the equation of motion

can be written as follows:

s?’[M]+s[D]+[K.]+| K o)} +| K Nea—sz+25@5 s)} ={F(s
SR R LO R P Ees e O R ORI

Now, by adding extra-coordinafes} (1,...,N, ) called dissipation coordinates as:



(9)

{z(s)} :{ “ }{q(s)}

s +2(ws+of
The equation of motion may be rewritten, in thelbap domain, as two coupled second order

equations:

(SZ[M]’“S[D]*[Ke] +[Kv°°]){Q} ~a[ K¢ [{7 ={F} (10a)

#3250 -+ ={9 o)
With[Kﬂ=G0[IZV]anc{K\j°]=[Kﬂ£1+§aﬁjare respectively the static or low

frequency stiffness matrix and the dynamic or Higlguency stiffness matrix corresponding

to the viscoelastic layer.

The matrix[D] represents the structural damping of the structuitbout the viscoelastic

effect.
After some manipulations and back to time domdie, fbllowing equation of motion in the

Laplace domain is obtained:

) A et el

Or in compact form:

{$'[Mg] +s[De] +[Ko[H{ o} ={ Fe (s} (12)
The derived second order time domain equation diomas expressed as:
[Me[{te} +[De [{ e} +[ Ko ]{ e} ={Fc} 13

Where[M,];[Ds]and K] OR®™ withn, = N (1+ N, ) ,are respectively the mass, damping

and stiffness matrices of the global viscoelastitMamodel expressed as follows:
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_[M] 0 0o | [D] 0 0 _
0 &[K\ﬂ 0 : 0 %[K\?] 0
Mel=| . afo w0 | [Be]= o 0
|’ 0 1] 0 0 Fulelw])
(14)
F g
(KIA(] ak] - (K] i .
E o . o
T 0 ZNG
_a%[K\‘;J 0 a%[K\ﬂ

The dissipative coordinate{sz} appears as augmenting state variable which inereas

considerably the order of the differential equatainmotion. In fact, the dimension of the
system is at least doubled and the computatiomed i$ notably increased. This motivates the
use of model reduction methods, as an alternabgisn for this problem, which will be
presented in the following section.

4. Model reduction methods
Model reduction is necessary to reduce the higerdidite element models to a smaller size
so that direct dynamic analysis can be performedefl model reduction methods have
commonly been used including Dynamic [16, 17], Guya8, 19], Modal and Modal in
physical space [20-23] reduction methods. Theyhmaolassified either by type of reduction
approach, or by type of reduced space coordinates.
The former can be further divided in two categoas<elimination dofs approach and modal
projection approach. Indeed, elimination dofs apphois based on the partition of the full
dofs of the structure into ‘m’ master and's’ slad@&s. In the reduction process, master dofs
are retained and slave dofs are removed. This @atégcludes notably Dynamic and Guyan
reduction methods. For modal reduction approacpardtion of the modal matrix for the

associated undamped model is established. The tonwedes are retained and the else are
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removed. Both modal reduction and modal reductionphysical space belong to this
category. The concept of physical, generalizedrasitid coordinates will be clarified in the
latter type of reduction.
In fact, based on the type of coordinates retaasetthe reduced order coordinates, the existing
model order reduction methods fall into three baategories:

» Physical coordinates reduction

* Generalized coordinates reduction

* Hybrid coordinates reduction
In the physical coordinates model method, the redunodel is obtained by removing part of
the physical coordinates of the full model. Thirg toordinates of the reduced model are a
subset of the full model. This is the most strdigfwtard model reduction among the three
categories. Guyan and Modal in physical space temuenethods belong to this type of
coordinates.
In the generalized coordinates model reduction,tfal coordinates that are not physical
coordinates are generally referred to as genedativerdinates. The Modal reduction method
is one of the frequently used generalized coordmat
The hybrid coordinates model reduction uses a coation of physical and generalized
coordinates. Thus, this technique provides a gepdesentation of the dynamic behavior of
the sandwich structures. The very useful methodrgehg of this type is the Dynamic

reduction method.

Each method is attached to the definition of adf@amation matri1[<T]D R%"™  related the
ne full dofs of the viscoelastic sandwich structurethe n reduced dofs wherg<< ng
Thereby, the displacement vec{coJ(G} can be written as a linear combination of the pabs

elements presented by the column$Tf as:
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{ae} =[T{a} (15)
Where:

{q,} OR™"is the displacement vector of full GHM model.
{qc} OR™ is the vector of reduced coordinates through thgption or[T] .

[T]OR®*"is the transformation matrix.

This transformation takes various forms dependmghe used reduction technique.

The equation of motion in full space Eq. (12) isrthwritten in reduced space as follows:

([T (meTrIfad +(I7T oali It +(TT Tl =[7T'{F) 1)

Hence, the reduced mass, stiffness and dampingcemtas well as the reduced load vector

can be written as:
[K]=[TT [Ke]T]
(M =[TT M][T]
(O] =[] [O6][T]
{F}=[TT{F}

For each type of reduction process, the transfoometom the full space to the reduced

(17)

space is established through the partition of sirat displacement vecto{q} into two

subvectors as follows:

4= {Zm} (18a)

Where the subscript m is related to the master aodfsthe subscript s is related to the slave

dofs.
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Following the master and slave dofs partition asduaing that only the master dofs are

loaded, the external load vec{} can be written as:

(7= {Fom} (18b)

Consequently, the dynamic equilibrium of the assteci undamped system can be expressed

as:

(b R

K" K® M= M= )9 0 (19)
Thus, the definition of transformation matrices éach type of reduction method is based on
the use of the equilibrium equation Eqg. (19) as$ balshown in the following sections.

4.1. Dynamic reduction method

This method is proposed by Leung [16] then by Retann [17]. It uses jointly the modal

synthesis method and the dynamic reduction methusohtically to the substructuring

technique proposed by Craig and Bampton [36] inmmment modal synthesis context.

Using the second part of rows of the Eg. (19), she-vector of salve dof%qs} can be

expressed in term of master d{)t:é“} as:

s s s\ sm sm m 20
(o} =-([k=]-a[m=]) (<" ]- (M) )
It should be noted that this expression is defingduen the slave dynamic stiffness

Z(A):([KSJ—A[MSSJ) is nonsingular. Indeed, this condition is satisfactfor each

frequency else the eigenfrequencidst(g,, v =1:s) of the salve problem defined as follows:

([k=]-a,[M=])}{s.}=0 (21)

Wheres =diag(g,)and @] =[--- {¢,} --];u=1...s are the spectral and modal matrices

respectively.

14



This leads to define the dynamic contribution & #have dofs as:

[T ()] ==([«=]-A[m=])" ([ ] -A[m]) )
As can be seen, this relation (22) is an exact miymaelation which depends strongly on the
value of unknown eigenvalue. This leads to resolve a non-linear eigenvalueblpro.
Nevertheless, the viscoelastic behavior of thectire is linearized [35], so it is necessary to
approximate this relation to be adequate for thedlr viscoelastic problem.

Hence, according to Leung and Petersmann method 1¥§ the hybrid projection

coordinates can be expressed as follows:
{a} ==[Ke] e o} + @, )¢} =
Where[de] is the p truncated modal basis of the slave structure withsp

This hybrid formulation is similar to the Craig-Bpton method applied in the case of sub
structuring procedure. Thus, the master dofs a¥guhction dofs and the slave dofs are the
interior dofs.

While this dynamic reduction formulation was dewsld for undamped systems, a
straightforward application of the above developtsdn the viscoelastic damped sandwich

structures yields to the following expression @& #tave displacement vector:

{q) =-[keT KR} -[keT (KD K+, )9 24)

Hence, the reduction of the full dofs to the redldefs is achieved as follows:

q’| (I, 0 O |[g"
er=t t, PNz (25)
z 01, O0]|c

[Ton]
Where:[TDyn] is the dynamic transformation matfik;] and[l,] are the identity matrices of

-1

appropriate siz¢t,] :—[Kf]_l[K;‘“Jand [t,] :—[Kf] [K;‘Z“ Kﬂ represents the static

qz
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contribution of the structure an@® basis represents the dynamic contribution of the

structure.

For the damped GHM model, the slave problem canriiten as follows:

([K]-a[M=]){a.} =0 o
The reduced mass, stiffness and damping matricethea be written in the form of Eq. (17)
using Eg. (25).

This method has a good capacity of prediction & tlynamic behavior of viscoelastic
sandwich structures combining static and dynamiutrdgmtions through a hybrid reduced
coordinates. Nevertheless, it requires the comiputatf p truncated modes which increase
the size order of the system and leads to a fewialal CPU time.

4.2. Guyan reduction method

The simplest, yet very useful, model reduction modtts the Guyan reduction method, which
is introduced by Guyan [18] and Irons [19] in 1985is method is an approximation of the
dynamic reduction method, according to which thextin associated to the slave coordinates,
is neglected. Thus, applying this static reductfmocedure for the damped sandwich
structures, the relationship between the full doid the reduced dofs can be expressed as

follows:

q" I .
sl — q

Q° =t ot {z} (27)
z

Where:
[Tq]is the static (or Guyan) transformation mdtik;[1,]; [t.]andt,]are the same

guantities as defined for Eq.(25).
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Under this form, it appears that Guyan reductiom igarticular case of dynamic reduction
when no slave modes are taken into account.

The reduced mass, stiffness and damping matricethea be written in the form of Eq. (17)
using Eq. (27).

Validity domain :

This method is valid and useful in an accurate domEghis domain is limited by the cuttoff

frequency [24, 25] .1t is the smallest frequenciedmined by the resolution of the eigenvalue

problem (26) defined ds = f.. Thereby, in the practice applications, the vafidiomain of
Guyan reduction method [ : 7. / 3] which reflects the “effective” frequency band.

Consequently, the quality of Guyan approximatiopesels on the good selection of master
dofs which defines its validity domain. In practi@n optimal selection of master dofs must
be based on the maximization of the cuttoff fregqyefp. Out from the validity domain of this

method, the accuracy of obtained results is nolt eegitrolled.

4.3. Modal reduction method

Modal reduction consists to the derivation pk]spectral matrix andQ]modal basis

corresponding to the eigenvalues and eigenvectotBeoassociated undamped system Eg.

(4). Then, these matrices are divided into twospastfollows:

[Q=[a Q] [’\]:[/(\)1 ﬂ (28)

The displacement vector is presented as a combimatithe p first eigenvectors contained in
[Q]ORMP:

{a} =[Ql{¢} (9)

Applying this procedure to damped viscoelastic sackl structures, the full model can be

reduced through the projection in the generalipets as follows:
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[T ]
Where([T,,, ]is the modal transformation matrix.
The reduced mass, stiffness and damping matricethea be written in the form of Eq. (17)
using Eg. (30).
This method uses non-physical coordinates and rinecdtion can induces errors in the
evaluation of dynamic responses. In practice, tlelahreduction method leads to a good
accuracy results when the first modes are chosen typically from 1.5 to 3esmthe

frequency band of interest.

4.4. Modal reduction in physical space

This method was proposed by O’ Callahan [20]. Ibased on the modal projection in the
physical coordinates. O’ Challahan [21, 22] markibat this technique allows, after

expansion, to return from the reduced mopeixact solutions of the full model.

Indeed, the baspl] is partitioned into m master dofs and s slave dsffollows:

CEMERIT
q Qs (31)
The first line of the Eqg. (31) leads to:
{ar} =[Qu]{d} witn[Q, ] DR (@2
According to the used m master dofs amdtained undamped modes, three cases can be
highlighted:
a) m=pand[Q,,]is nonsingular

The Eq. (32) can be solved exactly as:

{¢} =[Qu]{a"} (333)
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b) m<p

This case leads to infinity of solutions{af} which is not accurate.

c) m>p and (ank([Q,,]) = p) is maximal

The Eq. (32) can be solved in the sense of liremstisquares as:
{C} :[le]+{qm} (33b)
WherdQ,, | :([Q]m]T [Q]m])_l[Q]m]Tis the Moore Penrose pseudo inverse.

Thus, by substituting Eq. (33b) into Eq. (31), steictural vector dofs can be written:

— leQLrnJr m (34)
{q} ) |:Q15Q1mJr :|{q }

Hence, the relationship between full and reducef$ darough the projection in physical
coordinates for viscoelastic sandwich structures loa expressed generally whem> pas

follows:

o r=| QQ, O
z 0 |

[T]

Q" [Q.Qn O], .
#
(35)

z

Where[TS,] is the modal transformation matrix defined in phgbspace.

Consequently, the reduced mass, stiffness and dgnmpatrices can then be written in the
form of Eq. (17) using Eq. (35). The definitionatransformation matrix using a number of
master dofs either equal or up the number of unéampodes (as mentioned in the cases a or
c) leads to the use of maximum rank sub-basisadty the rank of a matrix is defined by the
number of rows or columns linearly independent. Mraally, this linear independence is

evaluated by the conditioning number.
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O’ Challahan [20-22] and Friswell [23] shows initherevious studies, that using a sub-basis
[le]with high conditioning number ®0";1F) can affect the accuracy of results and can

generate erroneous responses. So, the procedsaif@eof master dofs is achieved such that

[Q..,] having the minimum conditioning number.

The modal reduction in physical space method alltvesderivation of reduced model which
is a subset of the original model expressed in iphyscoordinates. Furthermore, this
technique provides an expanded choice of masterldfit remains limited by the minimum
conditioning condition.

5. Numerical Applications
In this section, numerical applications is preserite order to illustrate the finite element

procedure used for viscoelastic sandwich beam daig pnodels and outline the practice
interest of proposed reduction strategies. Heneecansider one mini-oscillatoMNg =1) of
viscoelastic sandwich beam and plate which aretitotesl by two elastic layers (faces) in

Aluminum and a viscoelastic layer (core) of themeea242F01. The material and geometrical

characteristics of the used sandwich structurestawen in Tablel.

Tablel Mechanical and geometrical characteristics ofvibeoelastic sandwich structures

Elastic Layer (1) Viscoelastic core Elastic Lay2y (
Lbeam = Lpltae = 500T1m Lbaam = Lpltae = 500T1m Lbaam = Lplate = 500T1m
B =38mm /b, = 4000 b =38mwm/b, . =400mm b, =38mm/b, . = 400mm

h, =4.5mm h. =0.2mm h, =0.5mm

G, =70.3x 10N /m? G, =70.3x 16N /m?

G, (GHM modulus)
p, =275Kg /m’ p, =1099.Kg /m? Py, =2750Kg /m’
v, =03 U, =05 v, =03

The values of the parameters of the viscoelastiocnngercially available 242F01,

manufactured by3f¥ used at 25°C for one mini-oscillator are preseirieEable 2 [29].
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Table2. Parameters of the GHM viscoelastic model identifmdmaterial 242F01 3W for one mini-oscillator

Mini-oscillator (i=1) Value
a 1.047
¢ 3911.89
GO[MPa] 0.079

5.1. Viscodlastic Sandwich beam
The used FE mesh for the viscoelastic sandwich beaaives 2 elements through the width

and 20 elements along the length, having a totadbar of 1600 dofs. The excitation point is

selected in the extremity of the beam (Point P, afofranslation,) and the responses are

depicted in two different points P and K (dof afrtslatioru,) as shown in Fig.3.

Response points

Excitation point

Fig.3. Clamped-Free(C-F) sandwich beam finite element

In the remainder of this section, the results dtifrom the implementation of the GHM
model, as well as the responses of reduced modet$ the reduction techniques described as

above will be presented both in frequency and timeains.
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5.1.1. Frequency domain evaluation

The interest herein is focused on the frequencyalomesponses for both full and reduced
GHM models.

The full GHM model response can be derived direbyiyusing Eqg. (11) in order to calculate

the frequency response function (FRF) matrix aeWs:

H () ={a} [2(«) {8} (%)

Where [Z(a))] :—af[MG] + ja)[ DG] +[KG] is the dynamic stiffness matrix associated to the

damped viscoelastic structuréb}Tis a column vector which defines among all diseesti

dofs of the structure the position of the sele@gditation degree of freedon{ua} is a row

vector containing the coordinates where the regmage taken account.
Fig.4 depicts the frequency responses of the fliMGmodel plotted in the points P and K in

the frequency band of interest [0-700] Hz.

(@) (b)
60 . , ‘ . . : 100 . : ‘ ‘ ‘ —
[—Full model ddl uz point P] [—Full model ddl uz Point K]
50 ]
©
Lg 40 P
% 30f @
[y o
2. 207 =
() (0]
ERT: E
a a
S
g Or <
_10,
20 L | | L L ! -20 L L L | | |
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Frequency [Hz] Frequency [Hz]

Fig.4. FRFs of the full GHM model plotted in: (a) Point(®) Point K
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The frequency responses represented by Fig. htaja are considered as the reference for

the full GHM model. Indeed, the FRF amplitudes @B] have been computed by using a
convenient reference factor through the relafomlitude] dB] = 20x log, (|H @) /&~ §.

These responses can be determinate by the resolti&qg. (8) which describes the shear
modulus as a rational function as well as by the @d) which derives the problem as a
second order differential equation. In fact, thehmenatical development established in order
to derive a second order equation of motion Eq.(BE3)interest in time domain analysis while
the frequency analysis can be carried out dirdmtlyhe resolution of Eq.(8).

Fig.5 represents the FRFs derived from the reswiwf Egs. (8) and (11) plotted for the point

P.
60

IFuIl model resoI\I/ed by ElqA(1 1)
----- Full model resolved by Eq.(8) |l

0
o
T

N
o
T

w
o
~——

20r§

.
-

10r

.,
-

Amplitude [dB] ref.: 1e-6

o
T
P

T

10}

_200 100 200 300 400 500 600 700
Frequency [Hz]

Fig.5. FRFs of full model derived from two mathematicadls

It can be observed that the two frequency respodedsed from the resolution of Egs. (8)

and (11) are perfectly identical. This ensureseipgivalence of the two equations.

Next step consists of the determination of dampetiumdamped frequencies of the sandwich
beam which is carried out by the resolution of #igenvalue problem associated to the

damped Eq.(11) and the undamped Eq.(4) systemeatbsgly. Table3 represents the five

first undamped and damped frequencies of the viastie sandwich beam.
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Table3. Undamped and Damped eigenfrequencies of the sahdwemm

Frequenc Undamped eigenfrequencies [l Damped eigenfrequencies [t
f, 18.17 14.65

f, 113.83 91.75

f, 318.62 256.92

f, 420.80 343.94

fy 624.35 503.72

Fig.6 shows the frequency responses correspondiriget damped and undamped systems

plotted for point P. This will illustrate the effieaf the viscoelastic damping.

80

Damped GHM model
——Undamped GHM model

60

40r

20

or

Amplitude [dB] ref.: 1e-6

-20r

40t

_600 100 200 300 400 500 600 700

Frequency [Hz]

Fig.6. FRFs of the damped and the undamped GHM mod¢hésandwich beam

» Elimination dofs reduction approach
Now, we will compare Dynamic and Guyan reductiorthods belonging to the elimination
dofs approach with the full model for the visco@lmasandwich beam.

At the beginning, we choose m=30 master dofs fah lbeduction methods such that we
obtain two transformation matrices having the satimeension: Dim([TDynDz Dim([Ts])
and the size of each transformation is equ(ilﬁOOx 83(). For Guyan reduction method, the

choice of m=30 master dofs is constituted by wheofs which are the translation dofs normal
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to the midplane of the sandwich beam. Furthermtbie,choice is carried out maximizing the
cuttoff frequency. Then, the reduction processpigliad and the reduced mass, stiffness and
damping matrices as well as the external load vexgoesponding to each reduction method

calculated. The reduced stiffness  is aluated follows:

[2.(«)]

method compared to the full model is presented. Fi¢p) and (b) shows the corresponding

are

dynamic as

—af[MC] + ja)[DC] +[Kc] and the reduced model corresponding to each rexdfucti

FRFs plotted for the Point P and K respectively.
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Fig.7. FRFs for full and reduced models: Dynamic/Guyatuntion methods: (a) Point P- (b)

Point K of the viscoelastic sandwich beam

From both Fig. 7 (a) and (b), the frequency respoits the Dynamic reduced model is
identical to this of full model while the Guyan textd model stick well to the full model for
the two first modes of vibration but deviate aftee cuttoff frequency {. =165Hz) which

define the validity domain of the Guyan reductiopthod. After this cuttoff frequency, the
reduced model does not stick with the full modet fmllows it shape curve. This leads to
conclude that Guyan reduction method has the cgpacieproduce the original system but it

remains limited by its validity domain. Neverthedethe Dynamic reduction method enriched
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by the first slave modes (s=10) gives a very sattsity agreement with the full model
making it a suitable method for prediction of thaamic behavior of viscoelastic sandwich
structures.

Table 4 shows the frequencies values corresportditige full and the Guyan reduced model.
This affirms that the reduced model derived fromy&u reduction method is able to
reproduce only the two first modes of the full miogled outlines that the validity domain of

this method is limited by the cuttoff frequency.

Table4. Full and Guyan reduced eigenfrequencies for theoeigstic sandwich beam

Frequency Full frequencies [Hz] Guyan reduced feegies [Hz]

f 14.65 14.65
1

f 91.75 91.73
2

f 256.92 283.94
3

f 343.94 354.48
4

f 503.72 563.75
5

* Modal reduction approach
Here, the frequency responses derived from modalmaodal in physical space reduction

methods are compared to the full model. Indeeddetermine firstly the number of modes
associated to the undamped structure, which cduérthe frequency band of intere&t&f,

=1100 Hz) and (p= 17 modes).Then a projection enpifiysical coordinates is achieved by
the partition of the modal basis into master amgesldofs where m=p=17 (case a in section

4.4) and we inverse directly the modal basis cpording to the mater dofs contribution such
that [Q,,]has the minimum conditionning number. L@Uad([le])=50.Thus, we obtain
two transformation matrices having the same sBﬁﬂ([TMod]) = Dim([TSD])with the

dimension of each basis is equa(1t800x 817 .
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Fig. 8 (a) and (b) depicts the frequency respofwefall and reduced models.
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Fig.8. FRFs for full and reduced models: Modal/Modal hygical space reduction methods:
(a) Point P-(b) Point K of the viscoelastic sandwieam

As expected, the frequency responses curves foaceedmodels and full model are in good
agreement for the point P and K as shown by Fig)8&d (b). This leads to conclude that
modal reduction projected in generalized or in ptglscoordinates is a viable method for the
prediction of the dynamic behavior of structuresoiporating viscoelastic materials.

» Physical coordinates approach
An overlap of elimination dofs reduction approacid anodal reduction approach is realized
through the projection on the physical coordinatmsding to compare Guyan reduction
method to modal reduction in physical space witle tlull model. Hence, the two
transformation matrices must have the same sizerpare them such that the master dofs of
Guyan reduction method is equal the master dofsnoflal reduction in physical space
method. Let’'s the number of master dofs m=30 whgchigher than the number of modes

p=17. Consequently, we test the case where m>p (cassection 4.4) for modal reduction in
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physical space method. This leads to two transfoomanatrices adi m([TSD]) = Dim([TS])

with size(1600x 83().

Fig. 9 (a) and (b) represents the correspondirguéBcy responses comparison.
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Fig.9. FRFs for full and reduced models: Guyan/Modalhggical space reduction methods:
(a) Point P-(b) Point K of the viscoelastic sandwieam

As can be seen, the frequency response derived moaal reduction method is in good

agreement with the reference while the frequenspaese of Guyan reduction method

deviates after the cuttoff frequency both in Fig.(& and (b). This affirm that Guyan

reduction method is limited by its validity domédbt it can generally predicts the dynamic

behavior of viscoelastic structures with less aacurthan modal reduction in physical space

method which needs an additional time of evaluat@ative to Guyan method.

Consequently, through the projection on physicabrdimates both Guyan and modal

reduction in physical space are viable methods lwhicle to reproduce the original model.

However, for Guyan reduction method the optimalich@f master dofs is conditioned by the

maximum of cuttoff frequency.
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The performance of all proposed reduction methoderim of CPU time is shown in Table 5.

Table5. Performance of proposed reduction methods in feqy domain

Total CPU time

[min]
Full  Guyan Dynamic Modal Modal in physical space
263 35 52 65 78
Reduction ratio (%) - 87 80 75 70

Table 5 shows the total computing time for full asduced models. This time, evaluated for
each reduction method, includes the calculationtheftransformation matrix and the FRF
response which is obtained by solving linear eguatiat each frequency point. For the clarity
of comparaison, it should be mentioned that aluced models have the same size 830.
Hence, as can be remarked, while the reduction mtterm of models dimension is about
50%, it is so advantageous in term of CPU timefabt, this ratio reaches 87% with Guyan
reduction method and 80% with dynamic reductionhoétwhile it not exceeds 75 % with
modal reduction method and 70% with modal reductiophysical space. The additional
CPU time for modal reduction method in generalinegbhysical space can be explained by
the calculation requirements of undamped modes #ed verification of minimum
conditionning number in the case of projection loa physical space. Hence, these reduction
methods allow generally a drastic reduction makiregn a suitable choice to handle both the
prohibitive computational effort and the viscoeilgist especially for complex structures with
large finite element model or in optimization prduee when the dynamic calculations of
such models become more complicated. Consequethtéy, application of these direct
reduction methods in frequency domain able to siave considerably leading to perform the

applicability and the efficiency of these methaalsime domain.
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5.1.2. Time domain evaluation
The interest here is intended to time domain aisfgs the viscoelastic sandwich structures.
In fact, the prediction of the dynamic behaviorsoth structures remains until now focused
on the frequency analysis more than time analydere both steady state and transient
analysis are carried out.
The resolution of temporal equation of motion EfB)(is performed using the Newmark’s
integration technique [37] with an unconditionadiiable scheme. This technique is used in
order to derive the time responses for both full eeduced models which will be compared
for each reduction method. These comparisons ar@rped through static tools called
Temporel prediction indicators.

» Temporel Prediction indicators

Results comparison tools are based on the statslicator calculations associated to the full
and reduced responses. In fact temporal momentsisualy used to quantify a temporal

signal in order to compare several transient resgmr38]. Hence, thd"iorder of the

temporal moment of a responyét) is defined as [39]:

M, = [ t-t) (vo)et
i (37)

Wheret, represents the temporal shift arttte moment index order.

In this case, the temporal momevitis defined fort, = 0and normalized as follows:

E =M,,Energy (m$ )

T= % , Central time (centroid) (s) 39)

0

2
D? :%—(&J , Root means square duration {
0 0
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Thereby, this triplet of indicators (E, T and D)yéte to determine the error generated both in
the amplitude and time scales. Indeed, E is usedetatify the error in the amplitude of the
response; T and D are used to identify the errtinerperiodicity of the response.
Gerges [40] was proving that a relative error afeorof +4%in energy E,+2% in central
time T and+4% in Root means square D is admissible in ordeatmate the reduced model
compared to the full model.
In the remainder and for good clearance, it shbeldhoticed that all time responses will be
plotted only on the Point P.

* Seady state analysis

The sandwich beam is exhibited to a harmonic loathe form { F(t)} = F, sin(at )where

F, =INand w=>50mrad /s;( f= 25 Hz). The steady state response is estagligfter 1s of

transient response and the oscillations are wablestover a period of time from 2 to 3 s.
Therefore, in the following, the time response d&di from a harmonic excitation will be
presented in the interval of time [2-3] s.
The same procedure of comparaison for reducedwhchédels presented in section 5.1.1 is
also carried out in this section with the time domanalysis. For each type, the size of the
reduced models is kept the same as mentioned préwdus sections.

* Seady state responses for Elimination dofs reduction approach
The time responses for full and reduced modelpaasented in Fig.10 (a) and (b).
Fig.10 (a) show that the time responses curvelufomodel and those of reduced models are
in good correlation over a period of time of 1sréjeGuyan reduction method sticks well

with the full model because the excitation frequeimcwhich the sandwich beam subjected is
less than the cuttoff frequency & f.). So, the excitation covers the validity domairtiué

method leading to good agreement with the reference
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Fig.10. Steady state responses for full and reduced maddgisamic/Guyan reduction

methods of viscoelastic sandwich beam: (&x(f,) - (b) (f > 1)

Table 6.1Temporal moments for the steady state respongée eiscoelastic sandwich bearfi & fc)

E T D
Full 9.3002E-6 1.3804 0.8220
Dynamic 9.3000E-6 1.3804 0.8220
Guyan 9.3586E-6 1.3808 0.8218

Table 6.2Temporal moments for the steady state response efiscoelastic sandwich beanfi & fc)

E T D
Full 4.65001E-6 0.6902 0.4110
Dynamic 4.65000E-6 0.6902 0.4110
Guyan 4.58005E-6 0.6700 0.3889

Furthermore, Table 6.1 shows that the relativerd@rr@energy E between the full model and
the Guyan reduced model is of order of -0.62% wttile error not exceeds 0.002% with the
Dynamic reduced model. This confirms the visualfieggion in amplitudes.

In addition, the relative error in central momentaild means square root D not exceeds

0.04% for Guyan reduced model and it is practicalpual to zero for Dynamic reduced

32

8?10 —Ful | 1 | T
o L Dynamic reduston| y | l | ‘ ?:::S“.::;::f::;::m
M i
N { | -
ol !\ | \l | | I | | |
2’\ LI, \- !\ i lln -\ -1 | ‘]
inuninisint =
AR
8l ‘; |
2 22 24 26 28 3 T m abi ik e 2Tz i i s

22



model. Consequently, the obtained results in thee eghere < f.) present a satisfactory
accuracy compared to the full model enabling taded the reduced models.
However, when the excitation frequency is highemtlthe cuttoff frequency f(> f.), the

obtained results for full and reduced models otmidastic sandwich beam exhibited to

harmonic load under a frequency excitatibs 300Hzare depicted in Fig.10 (b).

As can be seen, in this case, the results stdos®its accuracy. Indeed, the reduced Guyan
response presents an apparent deviation in botlitadgs and time scales (Table 6.2). The
deviation in amplitudes scale is indicated by atre¢ error which reaches 1.5% in energy E.
In the time scale, the relative error has the oodés% in D and 3 % in T. These values are

significant compared to the case wheffe<(f.) and leads to conclude that Guyan reduction

method is limited by its validity domain. Hence,ybed the cuttoff frequency, Guyan
reduction method is less accurate. Neverthelessalic reduction method preserves its
capacity to reproduce the full steady state respansboth cases leading to affirm the
performance of this reduction method in the pradlictof the dynamic behavior of
viscoelastic sandwich structures.

* Seady state results for modal reduction approach
For modal reduction methods the obtained resuttshown in Fig.11.
It can be observed in Fig.11 that the time respomdesteady state motion for the reduced
models are in good agreement with the full modélisTis confirmed by the values of the
three central temporal moments. In fact, Table &shthat the relative error in E does not
exceed 0.1% while the relative error in T and Prictically zeros. Thus leads to validate the
reduced models which allow a perfect reproductibthe original model in amplitude and

time scales.
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Fig.11. Steady state responses for full and reduced Molkldal/Modal in physical space
reduction methods of the viscoelastic sandwich beam

Table 7Temporal moments for the steady state responseamodfal reduction approach of the viscoelastic
sandwich beam

E T D
Full 9.3002E-6 1.3804 0.8220
Modal 9.2904E-6 1.3804 0.8220
Modal in physical space 9.2904E-6 1.3804 0.8220

The comparaison of Guyan reduction method to moathiction method in physical space for
steady state responses is also carried out. Thenebit results indicates a relative error in
energy E of 0.1% for modal reduction in physicahap which reaches to 0.6% for Guyan
reduction method. This implies that through theggotion on physical space, modal reduction

method in physical space has the capacity to rejmedhe original model better than the

Guyan reduction method.

34



e Transient analysis

In this section, the viscoelastic beam is subjetteah impulse load of duratioh, .. =2ms

and amplitude equal to 10N.The same strategy ofpasison between the different reduction
methods is carried out. Furthermore, as mentioneld previous sections, for each reduction
approach the equality of reduction basis is pravdide

» Transient results for elimination dofs reduction approach

The comparison between reduced models and full hisd&own in Fig.12.
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Fig.12. Transient responses for full and reduced Modejsianic/Guyan reduction methods

of the viscoelastic sandwich beam

Table8. Temporal moments for the transient responsesimirelted dofs reduction approach of the viscoatasti

sandwich beam

E T D
Full 1.0387E-6 0.2055 0.0498
Dynamic 1.0387E-6 0.2055 0.0498
Guyan 1.0403E-6 0.2054 0.0498

The time responses to an impulse excitation aptiet P of the viscoelastic sandwich beam
are well correlated before and after reduction.idB=s the three central moments reflect that
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Dynamic reduction method is a viable method whieproduces entirely the original model.
Since the frequency spectrum of the impulse exoitatovers the validity domain of Guyan
reduction method, the reduced response derived fihisrmethod stick well with the original
while it represents a relative error in E of thderof 0.15% and a relative error in T of the
order of 0.04% (Table8). Thus, these values caidata the Guyan reduced model. As result,
this method presents a suitable choice in termnoplcity, feasibility of implementation and
also satisfactory accurate results.
» Transient results for modal reduction approach

The derived transient results for both reducedfatignodels are presented in Fig.13.
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Fig.13. Transient responses for full and reduced Modelsd@//Modal in physical space

reduction methods of the viscoelastic beam

Table 9 Temporal moments for the transient responses ofahmeduction approach of the viscoelastic sandwich

beam

E T D
Full 1.0387E-6 0.2055 0.0498
Modal 1.0369E-6 0.2055 0.0498
Modal in physical space 1.0369E-6 0.2055 0.0498
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Fig.13 shows the transient responses for the reldmoelels derived from modal and modal in
physical space reduction methods compared to thenfwdel. It can be observed that these
responses are identical. In fact, modal reductiethimd returns the p first exact modes of the
associated undamped model allowing a reproductibrthe original model through a
generalized coordinates projection while modal o#ida in physical space method allows a
reproduction of the full model through a projectionphysical coordinates. This is affirmed
by the three central moments (Table9) which in@idahat both reduced models preserve the
periodicity of the full response with a relativearin the energy E which does not exceed

0.17% leading to validate these two reduction nmagtho temporal domain.

Tablel10.Performance of proposed reduction methods in tomeain

Total CPU time

[min]
Full  Guyan Dynamic Modal Modal in physical space
365 40 65 85 92
Reduction ratio (% - 88 82 77 75

Table 10 presents the performance of the propessieced models compared to full model in
time domain. There is a significant reduction raito total CPU time required for the

evaluation of reduced basis and temporal respoasesach iteration which justify the

efficiency of these reduction methods in time domai

5.2. Viscoelastic sandwich plate

In this example, the interest is focused on th&ligldomain extension of Guyan reduction
method. In fact, after meshing the plate ir@x 15finite elements as shown in Fig.14, the

master dofs, which are translation dafs are chosen such as the cuttoff frequency is

maximal. Hence, the distribution of the chosen eradbfs (m=40) is illustrated in Fig.14.
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The plate is clamped on the four sides (C-C-C-@g FE discretization scheme leads to 8310
dofs in total number. The excitation and the respsrare depicted in the point E as presented

in Fig.14.
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Fig.14. FE model for the viscoelastic sandwich plate wlith position of the optimal master
dofs (» )
5.2.1. Frequency domain analysis

The frequency analyses for the sandwich plate @améed out as same procedure mentioned in
the previous sections. In fact, for each type dlion, the equality of bases is assured.

For the elimination dofs reduction approach, Gugad dynamic basis are constructed such

as the two bases have the same(ﬁamox 4195. Then, modal and modal in physical space

bases belonging to modal reduction approach are @isstructed such as the size of each

basis is equal t((8310>< 418(), with p=25 modes which covers 1.5 the frequencydbaf

interest [0-1200] HA1.5f, = 180QHz )
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Tablell presents the eight first damped and unddnipmuencies of the viscoelastic

sandwich plate. Indeed, the difference betweerdémeped and undamped frequencies values

indicates the effect of the viscoelastic damping.

Tablel1l.Undamped and Damped frequencies for the viscoelsatidwich plate

Frequency Undamped frequencies [Hz] Damped freqesifidz]
f, 264.26 213.07
f, 463.78 374.13
f, 604.83 488.05
f 788.08 636.37
4
f, 1095.50 885.47
fy 1125.20 908.92
f 1226.53 991.01
f, 1300.83 1051.70

» Elimination dofs reduction approach

The obtained results for the viscoelastic sandieake are presented in Fig.15.

40 :
Full
30- ---Guyan reduction method
| ﬂ -—"Dynamic reduction method
2 |
& 20p l' l‘ ) ] B
b j ‘l /"\ i\ !
E 10+ ) \ /A / \\ ! B
o / \ / \ l[l\ /N '
g o0 VN SN A f
Q ‘ / \ i\ / \\ : I AN AN
E -10r \ / \ / ‘\ / \\ X /‘// N/ ,’/ \‘\?\ -’7{\\3 b
s | YRY VAR YAAN
£ 20" i | \ ! / Vg N
< i i W \
30 i ! '\‘{,'// \_\\ /
- = ¥ \ Y/
Cuttoff frequency f, = 806Hz :
-40— A y
0 200 400 600 800 1000 1200

Frequency [Hz]

Fig.15. FRFs for full and reduced models: Guyan/Dynamiuction methods for the

viscoelastic sandwich plate
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As can be seen, the frequency response derived thienGuyan reduction method has the
capacity here to reproduce the frequency respohgedull model for the first four modes.
Furthermore, beyond the cuttoff frequency whicheguial to 806 Hz, the Guyan reduced
response follows the shape curve of the full madéh small difference. This implies that
Guyan reduction method is a viable method for thedigtion of the dynamic behavior of
viscoelastic sandwich structures, when the chofcenaster dofs is optimal. So, more the
choice is optimal, more the results are accurate. the dynamic reduction method, its
frequency response is in good agreement with respoh the full model. This affirms the
efficiency of this method in the reproduction oé ttull model dynamics.

* Modal reduction approach
Fig.16 shows the frequency responses for the redoncelels derived from modal and modal
reduction in physical space methods compared téuthenodel.
It can be observed that the two reduced frequeesyanses derived from modal and modal
reduction in physical space are identical to tlegdiency response of full model. This leads to
confirm that modal and modal reduction method irygidal space has the capacity to
reproduce the original coordinates of the sandvgithctures through a projection on the

generalized coordinates as well as on the physaaidinates with good accuracy.
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Fig.16. FRFs for full and reduced models: Modal/Modal réhn in physical space methods

for the viscoelastic sandwich plate

5.2.2. Time domain analysis

In this section, the time responses are focuseth®steady state analysis for the viscoelastic
sandwich plate in order to show the performanc&oyan reduction method. Indeed, the

viscoelastic sandwich plate is exhibited to a hanimdéoad of amplitude equal to 1N under an
excitation frequency equal to 400 Hz (around thmoed mode of vibration for the sandwich

plate). The steady state response is reached(aitds of transient oscillations and where the
oscillation becomes more stable, the time respoageplotted.

For Guyan reduction method, two cases are testedfitst one examine the steady state
responses of the sandwich plate where it is exddbib excitation frequency less than the

cuttoff frequency and the second shows the else evagere the plate is subjected to an

excitation frequency higher than the cuttoff fregoye
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Fig.17.Steady state response for the full and reduced models: Gyyamic methaods of t

viscoelastic sandwich plate: ((f < f,) - (b)(f > f,)

Table12.1. Temporal moments for the steady state respor f < fc) of eliminations dofs reduction approe

of the viscoelastic sandwich plate

E T D
Full 1.8377E-8 0.2428 0.0218
Dynamic 1.8377E-8 0.2428 0.0218
Guyan 1.8516E-8 0.2428 0.0218

Table12.2. Temporal moments for the steady state respor f > fc) of eliminations dofs reduction approg

of the viscoelastic sandwich plate

E T D
Full 2.1123E-8 0.3578 0.0412
Dynamic 2.1123E-8 0.3578 0.0412
Guyan 2.1128E-8 0.3578 0.0412

+ Casel:f <f,
Fig.17 (a)shows the steady state responses of the Guyan and Dynamic id mode
compared to the full model. It can be seen that the dynanponss presents a ¢ satisfac
agreement with the full model. This is clarified by théuea of the three ceial momeits (E,

T, D) (Table121) which is identical to those of the full model. Thus dynanreductic
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method remains a good choice of reduction metheoisGuyan reduction method, the steady
state response reproduces the original responseanielative error in energy E which not
exceeds 0.007% as shown in Table12.2 while theralemoments T and D, indicators of
error in periodicity, are identical to those of fad model. Hence, Guyan reduction method is
validate for each frequency excitation less thancthitoff frequency.

» Case2:f>f,
When the sandwich plate is subjected to a harmeraitation frequency higher than the

cuttoff frequencjf :110(]—|z), the steady state response of Guyan reduced moesEnts a

little shift relative to the full model while dynamreduced response preserve its capacity to
reproduce the full response (Fig.17(b)). In fabg teduced response derived from Guyan
reduction method presents a few relative errornergy E of order of 0.02% while its
preserve the periodicity of the full model as shownFig.17 (b). Consequently, Guyan
reduction method can predict with good accuracy \tseoelastic behavior of sandwich
structures when the choice of master dofs is opti®@ compared to the case of sandwich
beam where the excitation frequency is high than duttoff frequency, Guyan reduction
method presents in the case of the plate mordegatsy results.

For modal reduction approach, the obtained reanttpresented in Fig.18.

The reduced responses obtained from modal and medacttion in physical space methods
are identical to the full model. This is affirmey the values of the three central moments

(E, T, D) presented in Tablel3. In fact, the rgkaterror for each moment for the three
compared responses is practically equal to zers. [€Eads to conclude that modal and modal
reduction in physical space are a viable methodtht®prediction of the dynamic behavior of

viscoelastic sandwich plate.
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Fig.18. Steady state response for the full and reducecelmoBlodal/Modal in physical space

methods of the viscoelastic sandwich plate

Table 13Temporal moments for the steady state responsesodfl reduction approach of the viscoelastic
sandwich plate

E T D
Full 1.8377E-8 0.2428 0.0218
Modal 1.8375E-8 0.2428 0.0218
Modal in physical space 1.8375E-8 0.2428 0.0218

The transient analysis for the viscoelastic sandwlate subjected to an impulse excitation is
also established. Indeed, the transient reducqmbmess present a good agreement with the
full model for each type of reduction. This candxplained for Guyan reduction method by
the frequency spectrum of the impulse excitationctvitovers the validity domain of this
method. Hence, the optimal choice of master dofansimportant step in all reduction
procedure notably for Guyan reduction method ineortb good predicts the dynamic

behavior of viscoelastically damped structures.
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For this example and for the sake of brevity, ahly CPU time evaluated in time domain is

illustrated.

Tablel4.CPU time of the viscoelastic sandwich plate

Total CPU time

[min]
Full  Guyan Dynamic Modal Modal in physical space
1440 168 258 324 356
Reduction ratio (%) - 88 82 77 75

The dynamic potential of the proposed reductionhweds is more highlighted with the
viscoelastic plate example. In fact, the saved tieggiired for calculations of full and reduced
models increase by increasing the degrees of free@arthermore, these calculations takes
into account the evaluation of reduced basis aadténative procedure generated by the use
of Newmark scheme in time domain for each applieduction method. Hence, these
reduction methods constitute an efficient soluttongain time and to handle large finite
elements models with viscoelastic components. herohand, these methods are used in the
direct reduction context and they improved theficefncy notably in term of CPU time
leading to perform both frequency and temporalyamigl So, when more than one structure is
used and taking into account the non-linear bemlafithe most structures, the use of model
reduction method in the substructuring context omponent mode analysis [36] for
viscoelastic sandwich structures appears so ateact

5.3. Temporal analysis with localized nonlinearities in the substructuring context

In this section, attention is focused on assembizbelastic sandwich structures. Indeed, the
bolted joints are usually modeled by non-linearneats in the junctions of such structures.
Therefore, local nonlinearities are introducedatetinto account this effect. However, this is
done at the price of generation firstly a largetays dimension induced by viscoelastic

components and secondly time consuming due toetb@ution scheme which become more
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complicated with the introduction of local nonliméas. So, it remains challenging to
develop an efficient reduction strategy that aldeovercome this problem. For that, we
propose to combine Guyan reduction method with rhegathesis method for local non-
linear viscoelastic structures in the substructugontext. This is done by the addition of a
non-linear term in the equation of motion Eq. (18).fact, the form of this equation as a
standard temporal second order equation leadstioduce the local nonlinearities with a
simple and soft way. Thereby, the obtained tempooal-linear equation of motion can be

written as follows:

[Me]{te} +[Da]{ e} +[KeJ{ae} +{ fu (ae)} ={Fe} 9
Where{ f. (G )} indicates the added non-linear load which'ftsémponent can be expressed

by the Duffing oscillator as follows:

(40)

m 3

{ fo (qG)}i :le'lj [(qe)i _(QG)j:| :[Km (QG)]{QG}
=

m represents the number of attached non-lineargwprilied to' dof; 4, represents the non-

linear stiffness factor for each non-linear sprangd [Km (qG)]is the non-linear stiffness

matrix contribution.
The application of the proposed reduction straleggls to the following non-linear reduced

model:

[McJ{ei} +[D.]{a} +[KJ{a} +[Kucl{a} ={F} (41)
Where[M_];[D,] :[K.]:[K..]and F.} represent respectively the reduced mass, damping,

linear and non-linear stiffness matrices and thduced load vector obtained by the
application of Guyan transformation matrix whichdisscribed in the previous section (4.2)
with master (m) and slave (s) dofs expressed ferdirect method are replaced respectively

by junction (j) and interior (i) dofs for the suhstturing procedure.
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The FE model of the global viscoelastic sandwicainbés illustrated in Fig.19.
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Fig.19. FE model of the global non-linear assembled vikstie sandwich beam

The used FE model of the global viscoelastic sadldwieam involves 80 elements with 320
nodes and 5 dofs per node leading to 3200 tota. ddfis beam is clamped at its two edges
and the mechanical and geometrical properties doh esubstructure (SS1) or (SS2) are the
same as described for the viscoelastic sandwicimlbed able 1. The value of each used non-
linear spring coefficient ig =10°N /m°.

First, we start from the knowledge of the dynamatdovior of each substructure (SS1) and
(SS2) which are reduced separately by the appiicati Guyan reduction method.

* Guyan reduction of substructure (SS1)

The displacement vecto{qG} of the viscoelastic substructure (SS1) is decommbos

(ssy)

accordingly to the junction (j) and interior (i) fdgartition as follows:

q’ j
{qG}(551) = ql :[TS]{qZ} (42)
z

(ss1)
[TS] is the Guyan transformation matrix as defined ictisa (4.2).Then, the reduced system

is obtained by substituting Eq. (42) into Eq. (IIMus, the size of the reduced model for the

substructure (SS1) is 805 for the studied examfie. choice of junction dofs (j=5), which
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are translation dofs,, is carried out on maximizing the cuttoff frequeraf the viscoelastic
substructure (SS1) which is equal to 165 Hz.
* Guyan reduction of substructure (SS2)

In the same manner, the displacement vector ofd¢lsend viscoelastic substructure (SS2) is

partitioned in term of junction (j) and interioj (lofs as follows:

q' j
{qG}(ssz) = ql :[TS]{qZ} (43)
z

(s52)
The reduced model is obtained in the form of E@) (ising Eq. (43). Thereby, its dimension
is equal to 805 with j=5 dofs. Furthermore, thetaffit frequency of the viscoelastic
substructure (SS2) is equal to 165Hz.
After that, the reduced matrices are assembledtaite account the localized nonlinearities
in the junctions between the two viscoelastic suisstires (SS1) and (SS2) leading to a
global reduced system of order 1610. The obtaiaetporal results of the global viscoelastic
sandwich beam, which is subjected to a harmonid loathe point A of amplitude 50N to
arise effectively the non-linear behavior, in tesfindisplacement and velocity, are presented
in Fig.20 (a) and (b).
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Fig.20. Temporal responses of full and reduced modeleehbn-linear assembled
viscoelastic sandwich beam: (a) f<fc, (b) f>fc

As can be seen, Fig.20 (a) shows that the tempesplonses in term of displacement and
velocity are in good agreement in the case of anbaic excitation (f=25Hz) less than the
cuttoff frequency of the non-linear assembled wdastic (fc=165Hz). Furthermore, the
evaluation of the three temporal moments (E, TwB3$ proving identical values for both full
and reduced models leading to validate the visoaktation. For the case of high excitation
(f=300Hz) relative to the cuttoff frequency (fc=16H, the full and reduced models present a
shift in amplitude and time scales. This shifth®at 3% in energy E, 0.1% in T and 0.2% in
D for the displacement responses and 5% in E, Q8% and 0.1% in D for the velocity
responses. This leads to validate the applicabditythe proposed method for non-linear
viscoelastic structures in time domain. In othendyawhile the reduction ratio in term of
systems order is around 50% for such as non-lieeample, the accuracy of obtained results
in term of displacement and velocity is satisfagtétence, this reduction method presents an
efficient tool to handle non-linear structures withcoelastic materials in time domain which
enable to perform the frequency analysis with mgwecific techniques such as harmonic

balance method.
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The performance of the proposed method in termRif @me is shown in table 15.

Tablel5. Performance of the non-linear assembled viscaelsahdwich beam

CPU Time [min]

Full Reduced

684 61
Reduction ratio (%) 92

There is a significant CPU reduction ratio of 92éading to conclude that the proposed
reduction method for non-linear viscoelastic samttwstructures enable to bring two levels:
viscoelasticity and nonlinearity for the compromggmd accuracy and time efficiency.
It should be mentioned that from the studied exaspf viscoelastic sandwich (beam, plate,
assembled beams) which are academic structuresiethetion ratio in term of systems
dimension does not exceeding 50% but it can bellges® raise further this ratio with more
complex structures.

6. Conclusions
In this paper, finite element procedures are coetbito first order shear deformation theory
(FSDT) and to GHM model for the modeling of visasic sandwich structures. The
introduction of internal variables or dissipatiaroedinates through a serie of mini-oscillators
to take into account the viscoelastic damping lieaed. Unfortunately, this was done at the
expense of increasing the model order. Consequemtbglel reduction methods have been
proposed as a convenient alternative for this goblFirst, Dynamic reduction method based
on the elimination of slave dofs and enrichmenthaf transformation basis with first slave
modes is developed. As result, the reduced mogebdeces well the original model with
good accuracy and few CPU time making it a besicehof model reduction methods for the
compromise accuracy-time gain in direct reductioocpdure. Next, Guyan reduction method
is expressed by a static basis, neglecting theéianassociated to the slave coordinates. This
method allows a simple implementation in the mastd elements codes with a significant

reduction ratio in term of CPU time and a good cétpaof prediction of the original model
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especially in substructuring context where the ssitg of an efficient reduction method
becomes twice reinforced firstly by the large systedimensions induced by viscoelastic
components and secondly by the consuming time gesterby the introduction of local
nonlinearities. Then, modal reduction method basedhe derivation of the first modes
associated to the undamped structure is establisiibs method constitutes a good
representation of the original model with reducd@lUCtime making it a suitable choice for
the reduction of sandwich structures incorporatiigcoelastic materials. Finally, modal
reduction in physical space method is outlined ggaection of modal basis in physical
coordinates system. Thereby, the projection on ipAlyspace is realized leading to good
results. However, this method needs an additioma tompared to others reduction methods
and requires also to verify the minimum conditiorghnumber condition.

In all reduction procedure, the proposed method® \weoving a good accuracy results and a
satisfactory agreement with the full model in bis#gquency and time domains. In other hand,
even the reduction ratio in term of systems size m@ exceeding 50%; it was reaching 90%
in term of CPU time which makes these methods talslei choice to handle viscoelastic
sandwich structures with an accurate and efficieayt. Furthermore, the kernel of the idea to
use model reduction methods in time domain carnxptamed by the temporel interest of the
GHM model which allows transformation from a fregag rational shear modulus function
to a temporal resolved second order equation wingbroves its importance notably in

substructuring context for structures with locahlivearities.
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Response to reviewer comment
Reviewer 2#

Q1: On page 29, line3:

...and the FRF response which is obtained by a miaversion at each frequency point.

Do you really need invert the matrix (General sgffs matrix) in order to calculate the
responses? At each frequency point, solving theatirequations by elimination and back
substitution (or equivalent algorithm) is more @#nt than inverting the matrix and
calculating product (matrix and vector).

Response:

The FRF responses are effectively computed by rsplailinear system equations in the form
Ax=b which is performed in Matlab® software usirg tcholesky factorization. In fact, the
matrix A, symmetric and positive definite, is deqmsed as A=LLwhere L is a lower
triangular matrix. Then, forward substitution Lzahd back substitution'Lx=z, the desired
solution x can be subsequently computed by soltriegriangular linear systent x=z.

Hence, to clarify this idea, the following phrasassrewriting on page 29, line 3 as “and the
FRF response which is obtained by solving linearagiqns at each frequency point”.
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