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Abstract

This study is related to structural vibration transmission and aims to propose a new approach to dynamically char-
acterize the interface between different substructures of a complex coupled structure. A power flow mode method
based on the imaginary part of the dynamic flexibility matrix is presented, which allows determining eigenvalues and
eigenvectors representing respectively qualitative and quantitative information on the power flowing inside the struc-
ture. It is further applied to study the power transmitted at the interface, making it possible to identify the direction
associated to the dominant power flow patterns and to quantify their contributions. Specific properties dealing with
moment excitation and high-frequency approximation are also detailed to provide complementary insights into their
dynamic meaning and behaviour.
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1. Introduction

1.1. General background

Complex mechanical structures usually encountered in the automotive or aerospace industries are composed of
an assembly of several components, often exhibiting different mechanical properties and joined at their interfaces by
different junction types. The various dynamic behaviours of these substructures and the applied external dynamic
loadings may generate important forces on the main structure, resulting in high acceleration responses of the on-
board equipment, potentially affecting adversely their performance, reliability and security. It is therefore necessary
to protect these components from these harsh interface loadings by isolating them from the rest of the structure.

Lots of researches have been performed during the last four decades to analyze, to model and to control these
vibration transmissions. Particular attention has been spent on structure-borne sound, which is defined as the vibratory
energy associated to elastic waves flowing through solid media. Initially concerning vibroacoustic issues of radiated
noise reduction, this approach still remains relevant for structural vibration isolation, resulting from the internal forces
acting at the interface between a source and receiver substructure. However, the derived methodologies are generally
based on simplifying hypotheses which tend to be unverified when dealing with complex structures: no rigid-like
receiver substructure, complex interface topologies, multiple junctions,. . . The whole vibration transfer phenomena
may also be hardly understood by independently comparing the interface force and velocity vectors [1, 2].

Refined isolation methodologies have been proposed, based on the power flow dissipated or transmitted between
the different substructures, providing new quantities of interest which allow characterizing the receiver or source
substructures, and possibly the junction components. Even if their final purpose is to reduce vibration response levels,
these methods also aim to bring new insights on vibration exchanges, such as the nature of the different couplings or
the principal transmission paths.
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1.2. Dynamic isolation of coupled structures

In their reference book [3], Cremer et al. noticed that vibration transfer in a complex coupled structure can be
divided into three main stages: a physical mechanism first generates oscillations, whose associated energy is thus
transmitted to the structure and finally allocated to the different components. This process is usually handled by
distinguishing transfers between a source substructure and a receiver substructure, through junction components,
whose definitions depend on the adopted goal. The vibration isolation problem then comes down to minimizing
vibrations transmitted to the receiver [4]. This is generally performed by decoupling the structural resonances or
the dynamic response levels of the source and receiver substructures. Hence it is necessary to link their different
input parameters, such as design variables, to the applied structural modifications (mass, stiffness and/or damping
distributions) or the computed isolation efficiency metrics.

As emphasized above, regarding the initial subdivision of the vibration transfer problem, interface variables are
of key interest. Generally, the dynamic behaviour at the interface is described using velocities and forces. These
primal vector quantities, complex valued and directly available experimentally or numerically, enable a detailed spatial
description, for example by using local transfer functions. However, power flow computations based on quadratic real
variables, resulting from space and/or time/frequency averages, seem to be particularly relevant and efficient [5, 1].

1.3. Power flow analysis

The first ideas associated to power flow analysis have been published by Lyon and Maidanik concerning vibration
propagation in simple systems [6]. The related basic concepts have been defined by Goyder and White, who proposed
a comprehensive theoretical study of structural power flow in flexible mono- and bi-dimensional structures [7, 8, 9].
This also corresponds to the effective power which can be derived, in harmonic state, from the real part of the complex
power [3]. The authors demonstrated that power flow constitutes a single parameter allowing to quantify and to
compare, in an efficient way, the main effects associated to structural vibrations. They have especially been focusing
on rigid source substructures joined to flexible receiver ones by spring elements. Pinnington and White also used
this approach to study the impact of infinite structure hypothesis on average power flow estimates [10]. Pinnington
then proposed a method based on the envelope of frequency response functions, experimentally obtained, to study
the power flow absorbed by a finite structure: this can be expressed as the sum of the power flows introduced by the
different measured vibration modes, which are associated to particular configuration of generalized forces [11]. This
global power flow analysis approach can be strengthened by taking into account the local properties of the structure
using mobility based methods [12]. In the case of complex assembled structures, deriving these quantities at each
interface point (including cross terms) allows to fully determine the total transmitted power flow [13, 14].

However such raw data make it difficult to properly describe the vibration transmission mechanisms. Hence
Mondot and Petersson introduced two new quantities to fully characterize a source substructure and the transmitted
power flow [15]: the source descriptor representing its ability to deliver power, and the coupling function denoting
the proportion of power flow transmitted to the receiver. These concepts have been extended to multiple connection
points using effective [16] or interface mobilities. The vibration source can therefore be decomposed into multiple
orders of a series, associated to the dynamic behaviour of the interface (rigid body or elastic motions,. . . ) [17, 18].

Focusing on a qualitative description of the transmitted power, and based on the equality between the time-
averaged power of a system and the energy dissipated by its damping, Miller et al. first proposed to perform an
eigenvalue analysis of a power matrix at the interface, to determine frequency ranges and mode combinations which
cause the junction to dissipate power [19]. The same idea can be found in the multipole method developed by Pin-
nington, which describes the power generated by a source as flowing through a set of vibration poles, constituting a
spatial vectorial basis of the size of the interface degrees-of-freedom (DOFs). By coupling this approach to frequency
synthesis ones, Su et al. proposed a mobility-based power flow mode method. It consists in transforming a set of
source forces or velocities into a new set of power flows: these are associated to modal forces or velocities weight-
ened by orthogonal functions derived from the eigenproblem of a mobility matrix [20]. The power transmitted from a
source to a receiver substructure by a set of forces can thus be seen as being injected by so many independent power
flow modes. To overcome the strong dependency of these modes on the physical parameters of the system and on
the frequency, Xiong et al. introduced a damping-based power flow mode theory, relying exclusively on damping
parameters [21]. The authors formulated power flow design theorems to passively and actively control some required
energy flow dissipation levels and patterns. Finally, other works have been exposed by Bessac et al. to characterize

2



vibration transmission between two substructures joined by pure stiffness junctions. Based on the eigenproblem of a
dimensionless coupling matrix, this method provides the coupling intensity and the associated prevailing transmission
paths [22].

1.4. Adopted approach
The method proposed in this paper is dedicated to low frequency vibrations of complex structures. While standard

modal approaches actually allow deriving efficient isolation results (e.g. by shifting the natural frequencies of the
receiver, reducing the number of significant responding modes, or ”nodalizing” the structure by modifying spatial
couplings and responses between components), such approaches do not allow to characterize the vibration transfer
mechanisms at the interface between different substructures.

A power flow mode approach, as initially proposed by Su et al. [20], has been retained to combine the advantages
of both finite element analysis, i.e. fine spatial description, complex geometry handling, vector quantities, and power
flow analysis, i.e. quadratic variables and scalar characteristic quantities. However, this method is based on a dis-
placement formulation and aims to derive power flow modes to qualitatively and quantitatively characterize interface
forces in order to estimate their ability to transmit power flow between components [23].

Following this introduction, the basic theoretical formulation of the proposed method is developed in section 2 to
introduce the concept of power flow mode. A simple parametric study is proposed to emphasize the complex dynamic
behaviour of these quantities. Section 3 presents the extension of this approach to characterize the interface forces
between two substructures, leading to the notion of power flow dominant subspace. Finally, the whole method is
applied to an academic coupled beam structure and some special features of the power flow modes are enlightened,
before ending with some general conclusions and perspectives.

2. Theoretical formulation

2.1. A flexibility-based approach
To illustrate this basic formulation, a classical two-DOFs spring-mass-damper system is introduced figure 1 whose

initial parameters are given table 1.

k1

m1

c1

k2

c2 c3

m2

k3

f1(t) f2(t)

x1(t) x2(t)

Figure 1: Two-DOFs spring-mass-damper system

Mass (kg) m1 = 6 , m2 = 4

Stiffness (N/m) k1 = 2000 , k2 = 8000 , k3 = 6000

Damping (Ns/m) c1 = 6 , c2 = 8 , c3 = 2

Table 1: Description of the two-DOFs system

As thoroughly detailed in the work of Bobrovnitskii [24] the average power flow of a N-DOFs system, at a given
frequency ω, can be derived from the real part of the complex power

P0(ω) = <e {P∗(ω)} =
1
2
<e

{
vHf

}
=

1
2
<e

{
fHv

}
(1)
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where f ∈ C(N,1) and v ∈ C(N,1) denote the force and velocity complex amplitudes, respectively1. This can be rewritten
as

P0(ω) =
1
4

(
fHv + vHf

)
(2)

Noticing that v = jωx in harmonic state,where x ∈ C(N,1) is the displacement vector, it becomes

P0(ω) =
jω
4

(
fHx + xHf

)
(3)

In order to express P0 as a function of the parameters of the system, the dynamic flexibility matrix Γ ∈ C(N,N) is
introduced

Γ(ω) =
(
−ω2M + jωC + K

)−1
(4)

where M ∈ R(N,N), C ∈ R(N,N) and K ∈ R(N,N) denote the mass (symmetric and positive definite), damping (symmetric
and semi-positive definite) and stiffness (symmetric and semi-positive definite) matrices of the structure, respectively.
By substituting it into the previous equation

P0(ω) =
jω
4

fH
[
Γ(ω) − Γ(ω)H

]
f (5)

The average power can then be expressed as a quadratic form associated to the imaginary part of the dynamic flexibility
matrix

P0(ω) = −
ω

2
fH=m {Γ(ω)} f (6)

Considering that the average power remains greater or equal to zero and that =m {Γ(ω)} is a real symmetric matrix, it
can be derived that it is also non-positive definite.

The main idea is now to optimize this power with regard to the external applied forces [25]. A discretized
Rayleigh-like quotient is derived by weightening equation (6) by the squared norm of these forces

R(ω) = −
ω

2
fH=m {Γ(ω)} f

fHf
(7)

Optimizing R at a given frequency ω = ω0 amounts to differentiating this equation with respect to the external forces
and, according to the stationarity property of the quotient2, leads to solve the following equivalent eigenproblem[

=m {Γ(ω0)} − sνIN

]
gν = 0 , ν = 1, . . . ,N (8)

where IN denotes the identity matrix of size N. S = diag(sν) ∈ R(N,N) is defined as a non-positive definite diagonal
matrix containing the power flow eigenvalues arranged in ascending order

s1 ≤ s2 ≤ · · · ≤ sn ≤ 0 (9)

and G =
[
g1 . . . gN

]
∈ R(N,N) represents the orthogonal matrix of the normalized power flow eigenvectors. These

matrices both satisfy the following orthogonal relations

GT G = IN (10)

GT=m {Γ(ω0)}G = S (11)

These power flow modes are independent of the applied external forces and allow to precisely characterize, at a
given frequency ω = ω0, the average power flow potentially available in the structure

1 .H is the complex transpose conjugate operator
2This result directly derives from the properties of symmetric matrices, as detailed in [26].

4



• the eigenvalues give quantitative information about the amplitude of the power flow associated to each mode ;

• the eigenvectors (or eigenforces) give qualitative information, representing paths of principal directions trans-
mitting the respective amount of power flow of the associated eigenvalues.

It must be noticed that such equivalent eigenproblem must be solved at each considered frequency: although
mathematically independent, the derived power flow modes correspond to physical quantities whose behaviour is
assumed to be continuous. A MAC-based mode pairing procedure has thus been implemented to overcome this
difficulty (cf. section 2.3).
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(a) Eigenvalues: − s1, − s2 (b) Eigenforces: − DOF1, − DOF2
� normal vibration modes

Figure 2: Power flow modes of the 2-DOFs discrete system

Figure 2 (a) displays the eigenvalues versus frequency of the two-DOFs discrete system: these are all negative and
tend toward zero at zero frequency. The first eigenvalue s1 has amplitude resonances located close to natural vibration
frequencies. It can also be seen that |s1| � |s2|, except in the antiresonance zone where both eigenvalues have the
same order of magnitude: s2 then reaches its maximum. Figure 2 (b) represents the evolution of each component
of the eigenforces versus frequency. These vectors are rotating and almost exchanging their initial deformed shapes
around the antiresonance. However, at resonance frequencies, the eigenforce associated to the dominant eigenvalue s1
is collinear to the normal vibration modes, verifying the modal appropriation principle [27]. Furthermore, the second
eigenvector of the power flow mode basis is thus orthogonal, representing the directions injecting the least power flow
to the structure.

2.2. Parametric study of power flow modes

A brief study has been performed to observe the influence of the physical parameters of the system on the fre-
quency behaviour of the power flow modes. To further emphasize the link between the physical parameters of the
system and its power flow modes, an analytical expression of the power flow eigenvalues is also determined in a
particular simplified case to introduce curve veering and mode-mixing phenomena.

2.2.1. Influence of the physcial parameters
It has been noticed that a variation of mass or stiffness parameters results in a frequency shift of the power flow

resonances, similarly to natural vibration frequencies (e.g. figure 3 (a), [−17%; +11%] for s1 and [−6%; +6%] for s2).
This variation also controls the amount of shape exchange between the eigenforces, whose rotation speed is illustrated
by the slope of the different curves around their inflection point, figure 3 (b). Assuming a proportional (or Rayleigh)
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damping of the system, i.e. C = aK + bM, it has been observed that a modification of parameter a acts on both
resonances: classically, as the damping increases, the bandwidth widens and the amplitude peak decreases, figure 4
(a). Moreover, it can be noticed that even if there is a frequency shift of the antiresonance, the gap between both
eigenvalues remains constant, as confirmed by the constant slope of the different component curves, figure 4 (b).
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(a) Eigenvalues: − s1, − s2 (b) Eigenforces: − DOF1, − DOF2

Figure 3: Influence of a stiffness variation of k3:
− initial, · · · -50%, − · − -20%, −− +20%, − +50%
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(a) Eigenvalues: − s1, − s2 (b) Eigenforces: − DOF1, − DOF2

Figure 4: Influence of a damping variation of a:
− initial, · · · -100%, − · − -50%, −− +50%, − +100%

This parametric study highlights a complex behaviour of the power flow eigenvalues and eigenforces, although
closely related to the normal vibration modes of the system. An analytical expression of the eigenvalues is thus derived
in the next section to clarify the connection with modal characteristics.

2.2.2. Simplified analytical insight
To avoid oversized complicated expressions due to multiple parameters, the following assumptions are made

m1 = m2 = m
k1 = k3 = kI and k2 = kII

c1 = c3 = cI and c2 = cII

(12)

The associated dynamic equilibrium equations verify Caughey’s condition, i.e. proportional damping assumption,leading
to real normal vibration modes. A modal superposition approach is adopted to conveniently derive the imaginary part
of the dynamic flexibility matrix, and the power flow eigenvalues are finally obtained by solving equation 8

s1(ω) = 2γ1(ω) = −
ωcI

(kI − ω2m)2 + (ωcI)2 < 0 (13)

s2(ω) = 2γ2(ω) = −
ω(cI + 2cII)

(kI + 2kII − ω2m)2 + (ω(cI + 2cII))
< 0 (14)
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It can be seen that each denominator is identical to the usual frequency response function one, confirming the
observed influence of the different system parameters. These power flow modes are represented figure 5. However
in this particular case, each eigenvalue admits a unique resonance and the antiresonance is replaced by a crossing
corresponding to a double-order multiple eigenvalue. This is emphasized by the fact that only equation (14) depends
on the coupling parameters (kII , cII) and is thus associated to the second (out of phase) normal vibration mode (figure
5 (b)).
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(a) Eigenvalues: − s1, − s2 (b) Eigenforces: − DOF1, − DOF2

Figure 5: Particular case of power flow modes

In order to determine whether the power flow resonance frequencies correspond to the normal vibration ones,
these are determined by canceling the derivatives of s1 and s2 with regard to ω

ω2
s1max =

1
6m2

(
2mkI − c2

I +

√
16m2k2

I − 4mkIc2
I + c4

I

)
(15)

ω2
s2max =

1
6m2

(
2m(kI + 2kII) − (cI + 2cII)2 +√

16m2(kI + 2kII)2 − 4m(kI + 2kII)(cI + 2cII)2 + (cI + 2cII)4
)

(16)

Although different, these values tend toward vibration frequencies as damping tends toward zero

lim
cI→0
cII→0

ω2
s1max =

k
m

= ω2
1 and lim

cI→0
cII→0

ω2
s2max =

k + 2k j

m
= ω2

2 (17)

Finally, as each eigenvalue is associated to a normal vibration mode of the system, it can be noticed that the
eigenforces displayed figure 5 (b) are frequency-independent and collinear to each vibration mode.

2.3. Curve veering and mode-mixing phenomena

Even if power flow modes exhibit particular modal-influenced behaviours in the case of a symmetrical distribution
of the system physical parameters, it has also been noticed that the slightest perturbation leads to one (or more)
dominant power flow modes with complex frequency behaviours.

This kind of phenomenon has already been enlightened for multiple-order normal vibration modes [28, 29]: figure
6 shows that small perturbations can generate interactions, sometime in a very localized way, between the eigenvalues
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Figure 6: Loci veering of power flow eigenvalues
− s1, − s2 ; · · · 3m2 = m1, −− 3m2 = 2m1, − m2 = m1

whose loci will come close until they reach a minimal distance and then diverge. This loci veering effect also implies
a mode-mixing phenomenon of the associated eigenforces, illustrated by a quick but continuous exchange of their
deformed shapes. Figures 7 (a) and (b) represent a simple criterion defined by

χ(k,l)
i j =

∣∣∣∣g(ωi)
k

T
g(ω j)

l

∣∣∣∣2∥∥∥g(ωi)
k

∥∥∥2
∥∥∥∥g(ω j)

l

∥∥∥∥2 (18)

applied to the eigenforces associated to the eigenvalues of figure 6 (k and l represent the compared power flow modes
and ωi and ω j the considered frequencies). At each frequency, orthogonality or collinearity of the eigneforces result in
a deep blue or deep red color, respectively: mode-mixing is thus illustrated by intermediate colors, giving information
on the quickness and the level of the veering phenomenon.
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3. Structural interface characterization

The aim of this section is to apply the power flow mode method to characterize the interface forces between two
components of an academic coupled structure depicted figure 8: a source substructure (S) submitted to an external
loading f(S ) and a passive receiver substructure (R). The dynamic equilibrium equation of this structure is given by

m4

k4

c4

k5

c5

m5

c6

k6

f(t)

m6

k1

c1

c7

k7

m1

m2

k2

c2

k3

c3

m3

x1(t) x2(t) x3(t)

x4(t) x5(t) x6(t)

Source

Receiver

+ junction

Figure 8: Six-DOFs spring-mass-damper coupled


Z(S )

ii Z(S )
i j 0

Z(S )
ji Z(S )

j j + Z(R)
j j Z(R)

ji

0 Z(R)
ji Z(R)

ii


 x(S )

i
x j

x(R)
i

 =

 f(S )
i
0
0

 (19)

where subscripts i and j respectively denote internal and interfac DOFs, Z(.) is the frequency dependent dynamics
stiffness matrix of a substructure and x(.) its dynamic response vector.

3.1. Associated power flow modes
3.1.1. Substructuring approach

To determine the power flow modes associated to the interface DOFs, the power transmitted between both sub-
structures must be expressed with regard to the interface variables

Ptr
j (ω0) =

1
2
<e

{
fH

j v j

}
=

jω
4

(
fH

j x j + xH
j f j

)
(20)

By decoupling equation (19) and considering the following compatibility equations x(S )
j = x(R)

j = x j

−f(S )
j = f(R)

j = f j
(21)

the equilibrium of the coupled structure can be classically reduced to[
Z(R)

j j − Z(R)
ji

[
Z(R)

ii

]−1
Z(R)

i j

]
x j = f j (22)

An expression of x j can be further obtained by inverting this equation. However, it can also be verified using bloc-
matrix computation that this expression corresponds to the dynamic flexibility matrix of the receiver substructure,
restricted to its interface DOFs

Γ
(R)
j j =

[
Z(R)

j j − Z(R)
ji

[
Z(R)

ii

]−1
Z(R)

i j

]−1
(23)

Equation (20) can finally be expressed as a quadratic form

Ptr
j (ω0) = −

ω0

2
fH

j =m
{
Γ

(R)
j j (ω0)

}
f j (24)
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3.1.2. Equivalent eigenproblem
Similarly to section 2.1, minimizing equation (24) at each considered frequency amounts to solving the following

equivalent eigenproblem [
=m

{
Γ

(R)
j j (ω0)

}
− sνIN j

]
gν = 0 , ν = 1, . . . ,N j (25)

where N j denotes the number of interface DOFs3. The derived power flow modes also verify orthogonality relations

GT G = IN j (26)

GTΓ=G = S (27)

where G =
[
g1 . . . gN j

]
∈ R(N j,N j) and S = diag(sν) ∈ R(N j,N j).

It must be noticed that equation 25 only depends on the physical parameters of the receiver and the frequency: the
derived power flow modes are independent of the interface forces applied by the source substructure to the receiver
one, thus allowing to characterize the power potentially transmitted at the interface. At each considered frequency,
the eigenforces represent the prevailing directions or paths through which the power proportional to the associated
eigenvalues will flow.

By comparison with figure 2, figure 9 displays the power flow modes associated to the two interface DOFs of the
six-DOFs discrete system. It can be observed that |s1| � |s2|, admitting power flow resonances at the normal vibration
frequencies of the uncoupled receiver substructure (at 2.45, 5.55 and 13.35 Hz). Moreover, figure 9 (b) shows that, at
this particular frequencies, g1 is collinear to the normal vibration mode, restricted to the interface DOFs.
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Figure 9: Power flow modes of the 6-DOFs discrete system

3.2. Interface force decomposition
The matrix G of the normalized eigenvectors gν derived equation (25) constitutes a full basis of size N j: these

eigenforces span, at each considered frequency, the whole power flow pattern space associated to the interface. Hence
it is possible to decompose the actual interface forces f j ∈ C(N j,1) as a linear combination

f j = Gα =

N j∑
ν=1

ανgν (28)

3To ease further readability, the following notation is adopted: Γ= = =m
{
Γ

(R)
j j

}
.
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where α ∈ C(N j,1) is a vector of complex-valued coefficients αν = α<ν + jα=ν representing the participation of each
eigenforce gν in f j. These are easily determined using the orthogonal property of the basis given equation (27)

gT
σf j =

N j∑
ν=1

ανgT
σgν = ασ (29)

By substituting this relation into equation (24)

Ptr
j (ω0) = −

ω0

2
fH

j Γ
=(ω0) f j = −

ω0

2

(
(GT f<j )T S (GT f<j ) + (GT f=j )T S (GT f=j )

)
= −

ω0

2

N j∑
ν=1

(
α<ν

)2
sν +

(
α=ν

)2
sν = −

ω0

2

N j∑
ν=1

|αν|
2sν > 0

(30)

the power transmitted at the interface given equation (20) can be interpreted as the sum of the power independently
transmitted by each of the N j power flow modes, also referred to as modal power flow Pν

Ptr
j (ω0) =

N j∑
ν=1

Pν(ω0) , with: Pν(ω0) = −
ω0

2
|αν|

2sν > 0 (31)

4. Application

In this section the proposed approach is applied to an academic coupled structure exhibiting a more refined dy-
namical behaviour. Particular properties of the power flow modes are also investigated and illustrated.

4.1. Model description

Source (S)

Receiver (R)

x

y

z

11 12 13

21 22 23

1 2

Junction

Interface

Figure 10: Coupled 2D-beam structure

The coupled structure depicted figure 10 consists in two clamped-free beams4 modeled using the finite element
method, whose geometrical and material properties are given table 2 and which are similarly discretized. The problem
is reduced to a plane one, coming down to 3 DOFs per node. A 10 N force is initially applied to the source substructure,
respectively along Ty and Tx at node 1 and 2 (figure 10). This substructure is connected to the receiver one by three
ball-joint links, modeled by local spring elements. The structure is globally submitted to a proportional damping. The
considered frequency band between [0-2500 Hz] corresponds to the low frequencies (i.e. low modal overlap) of both
substructures.

4.2. Power flow modes
According to the previously exposed formulation, power flow modes are determined by solving, at each frequency,

the equivalent eigenproblem given equation (25). The interface is considered from the receiver side, consisting in
constrained translational DOFs at the interface nodes and leading to six power flow modes.

4The x-locations of nodes 1, 2, 11, 12, 13, 21, 22, 23 are 0.5, 1, 0.25, 0.625, 0.75, 0.25, 0.5, 0.875, respectively.
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Structure Source Receiver

Dimensions (m) L = 1, h = 0, 02

Thickness (m) 0, 02 0, 03

Young modulus (Pa) 2, 1.1011 6, 7.1010

Density (kg/m3) 7800 2700

Damping (proportional) a = 1.10−5, b = 1

Junction stiffnesses (N/m) k j = 1.1010

Table 2: Initial parameters of the coupled 2D-beam structure
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(a) Power flow eigenvalues: (b) Mode-mixing criterion
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Figure 11: Power flow modes of the coupled beam structure

Figure 11 shows the evolution of the power flow eigenvalues versus frequency. s1 particularly shows a modal be-
haviour as it exhibits amplitude resonances at each normal vibration frequency of the receiver substructure5, excepted
at 1250 Hz where the resonance occurs on s4. This illustrates the decoupling between transverse and longitudinal
vibrations of the beam: the first three eigenvalues are associated to its flexural behaviour while the next three are
associated to its traction-compression one (whose first mode is located at 1250 Hz).

Both crossing and veering of the eigenvalues can also be observed, especially between s1 and s2. Figure 11 (b)
shows the visualization criterion, defined equation (18), applied to the associated eigenforces g1 and g2. According
to the previous comments, mode-mixing phenomena can be seen at each antiresonance frequency, whose amplitude
is conversely proportional to the distance between the eigenvalues: when these are very close the eigenvectors tend to
totally exchange their deformed shapes (e.g. at 1100 Hz).

4.3. Dominant power flow paths at the interface

The coupled structure is now subjected to the previously described loading. The resulting interface forces bewteen
the receiver enf the junction are projected onto the power flow mode basis to derive, at each considered frequency,

5These natural frequencies are located at 25, 150, 420, 815, 1335, 1970 Hz for the first flexural modes, and at 1250 Hz for the first traction-
compression one.
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the αν coefficients defined equation (29). Considering their complex value and their participation in the transmitted
power expression given equation (30), it is decided to focus on their absolute values.
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Figure 12: αν projection coefficients at the interface of the
coupled beam structure

Figure 12 shows these coefficients, which have been normalized so that their sum is equal to 1 at each frequency,
representing the evolutions of the active power flow paths at the interface. For example, interface forces at 50 Hz are
mostly collinear to g3 while they are distributed on both g1 and g2 at 600 Hz. Once again the decoupling between
the first three power flow modes, associated to the flexural behaviour, and the next three associated to longitudinal
one can be observed. Moreover it can be noticed that the most active path is not necessarily related to the power flow
eigenvalue having the higher absolute amplitude. This can be observed around 1200 Hz where the decomposition
is about 45 % along g6 against 20 % along g5. Consequently, more power could be transmitted to the receiver
substructure by considering different junction properties, another source substructure or different external loadings, in
order to modify the dynamic behaviour of the structure.
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Figure 13: Modal power flows at the interface of the coupled beam structure

Figure 13 (a) shows the evolution of the modal power flows Pν defined equation (31), which clearly depict the
frequency behaviour of the coupled system. A normalized representation of these quantities is proposed figure 13 (b),
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to illustrate the distribution of the total transmitted power flow over the different power flow paths. In the same way as
for the eigenvalues, the dominance of modes 1, 2 and 4 is emphasized: the directions of these eigenforces constitute
a principal subspace of the power flow mode basis, through which most of the power is transmitted.
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Figure 14: Truncation effect on modal power flows of the coupled structure:
− Ptr

j , · · · P1, − · − (P1 + P2), −− (P1 + P2 + P4)

Figure 14 (a) shows the evolution versus frequency of the transmitted power derived by truncating equation (30)
to different subspaces, respectively consisting of g1, [g1 g2] and [g1 g2 g4]. Figure 14 (b) illustrates the associated
relative errors with regard to the total transmitted power: in the last case, corresponding to the principal subspace,
more than 60 % of the power is released. Conversaly, the complementary susbspace concentrates less than 40 % of
the transmitted power, which constitutes an interesting property in a vibration isolation context.

Finally, it must be noticed that these results are quantatively related to the properties of the whole structure and the
external loading (location, direction). Therefore, any modification of these will lead to new active paths and change
the composition of the dominant subspace. However, it has been observed that this latter usually include one third of
the power flow modes, representing about 60 % of the transmitted power6.

4.4. Combined force and moment at the interface

Generally, interface forces between substructures shall apply simultaneously on both translational and rotational
DOFs. However moments are often neglected as they are more difficult to measure experimentally. Detailed studies
have therefore focused on rotational DOFs to identify situations where they must be taken into account [30]. Hence,
the source descriptor method proposed by Petersson has emphasized their role in vibration transfers [31, 32, 33]. It has
been shown that moments transmit more and more power flow as the frequency increases but also at low frequencies,
when the junction is located near a structural discontinuity.

It is thus necessary to take account of all the DOFs involved at the interface in the analysis of the coupled structure.
However, combined force and moment excitations are not directly comparable due to their different dimensions,
hence the interest in considering the associated power flows. To overcome this difficulty, Moorhouse has introduced a
dimensionless matrix formulation based on a mobility approach, normalizing cross-mobility terms by both force and
moment point-mobility ones [34]. It is therefore possible to quantify the coupling between different excitations and
to determine the extent to which an applied force or moment at a given location will affect the power transmitted by
another force or moment.

6This property of quadratic energy operators has already been highlighted in the literature, e.g. by Soize ??.
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Similarly, so as not to favor some directions over others in power flow modes, this weighting procedure is applied
using the dimensionless diagonal matrix D ∈ R(N j,N j) defined by7

D(i,i) =
1√
|Γ=(i,i)|

(32)

The weighted quantities Γ̄= ∈ R(N j,N j) and f̄ j ∈ C(N j,1) are then obtained as follows

Γ̄
=

= DΓ=D (33)

f̄ j = D−1f j (34)

allowing the expression of the power transmitted at the interface to be rewritten

Ptr
j (ω0) = −

ω0

2
fH

j Γ
=f j = −

ω0

2
f̄ j

H
Γ̄
= f̄ j (35)

The matrix Γ̄= having the same properties as Γ=, all the previously detailed approach can be applied to determine
normalized power flow modes.
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Figure 15: Generalized power flow eigenvalues:
− s1, − s2, − s3, −− s4, −− s5, −− s6, · · · s7, · · · s8, · · · s9

Figure 15 compares the power flow eigenvalues derived from the initial and dimensionless normalized formula-
tions, when all the interface DOFs of the coupled beam structure are constrained. The initial behaviour is close to
the previously described one (figure 11 (a)) but with higher absolute amplitudes, which confirms the stiffening of the
interface constraints8. While globally different, the normalized behaviour denotes the same properties: the eigen-
values remain negative, they exhibit amplitude resonances and a principal subspace can be observed (the associated
eigenvalues having smaller antiresonances).

The evolution of the power flow modal participation coefficients is illustrated figure 16. Once again the prominent
role of the principal subspace can be observed, although it may not consists of the same eigenforces before and
after weighting ([g1 g2 g7] and [ḡ1 ḡ2 ḡ4], respectively). This results from the homogenization of the different
DOFs components after weighting, which generates spatially more complicated paths. However, the power flow path
associated to the first longitudinal vibration mode remains decoupled and also becomes more important (g7 → ḡ2).

7According to Ji et al. various weighting matrices can be used, based on different matrix norms [35].
8The flexural behaviour is highly impacted by the rotational stiffening, contrary to the traction-compression one whose first mode remains

unaffected at 1250 Hz.
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Figure 16: Power flow modal participation coefficients

4.5. Extension to mid-frequency
It has been exposed that the proposed power flow mode method strongly depends on the frequency, implying

mode-mixing phenomena of the eigenforces and modifying the dominant power flow paths. However it has been
observed that their variations slow down at power flow resonances, where the dynamic behaviour is controlled by a
single normal vibration mode (unlike antiresonances). Moreover this variation tends to stabilize as the considered
frequency gets closer to the high frequency band associated to the receiver substructure (i.e. high modal overlap).
Hence, it seems interesting to determine a single, frequency-independent, power flow mode basis to characterize the
interface forces on a defined frequency band.

Two approaches have been used to determine a reference power flow mode basis. The first one has been proposed
by Cazzolato and Hansen in the context of vibroacoustic active isolation to filter radiation modes [36]. Adapted to
our objective, this consists in projecting each power flow basis G derived over a given frequency band onto the one
associated to a single reference frequency Gre f , by determining several orthogonal projection matrices P

P = G−1
re f G = GT

re f G (36)

The expression of the imaginary part of the dynamic flexibility matrix at the interface given equation (27) can thus be
rewritten as

Γ= = GSGT =
(
Gre f GT

re f

)
GSGT

(
Gre f GT

re f

)
= Gre f Sre f GT

re f (37)

where Sre f = PSPT ∈ R(N j,N j) is a diagonally dominant matrix, excepted at the reference frequency where it represents
the spectral matrix of the power flow eigenvalues. It is further filtered to obtain independent relations in the power
flow mode space by imposing

S̃re f = diag
(
Sre f

)
= diag

(
PSPT

)
(38)

The transmitted power flow is finally expressed according to the reference basis and this frequency-dependent filtered
matrix

Ptr
j (ω0) ≈ −

ω0

2
fH

j Gre f S̃re f GT
re f f j (39)

However, the main drawback remains the need to first determine all the power flow modes at each frequency: an a
priori procedure based on the average behaviour of the source substructure would be computationally more appealing.
Therefore, the concept of average dynamic flexibility matrix has been introduced

Γ=av =
1
N

N∑
i=1

Γ=(ωi) (40)
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allowing to solve only once the equivalent eigenproblem to determine the power flow mode on a given frequency band
(cut into N frequency steps). This finally leads to the following approximation of the transmitted power flow

Ptr
j (ω) ≈ −

ω0

2
fH

j Gmoy Smoy GT
moy f j (41)

While this approach seems barely credible at low frequencies for a purely modal dynamic behaviour, it shares simi-
larities with some mid-frequency model reduction methods, as developed by Soize et al. [37, 38].
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Figure 17: Mid-frequency power flow approximations

To illustrate both approaches, the physical parameters of the coupled beam structure have been modified to depict
a global mid-frequency behaviour considering the dynamic behaviour of each substructure: the source and receiver
have been separately tuned to present a low and a high modal overlap, respectively, on the considered frequency band.
Figure 17 (a) shows the derived power flow eigenvalues on 3500-5000 Hz. Both procedures give results of the same
order of magnitude, even if the normalized one ( fre f = 4040 Hz) introduces small variations due to the low mode-
mixing of the eigenforces. Figure 17 (b) represents the synthesized transmitted power flows, exhibiting little relative
errors. A variant of the normalization procedure is also proposed, which consists in not updating the eigenvalue matrix
and keeping it constantly equal to the power flow eigenvalues at the reference frequency. The obtained estimates seem
to give better results than the average flexibility ones.

5. Conclusion

A power flow mode method has been presented, based on a displacement formulation of the average power. It
has been demonstrated that minimizing this quantity with regard to the external applied forces amounts to solving
an equivalent eigenvalue problem associated to the imaginary part of the dynamic flexibility matrix of the structure.
The derived eigenvalues and eigenforces provide quantitative and qualitative information on the power flowing inside
the structure, respectively. A parametric study has emphasized the complex frequency-dependent behaviour of these
quantities with regard to the parameters of the system.

This approach has been further applied to study the power transmitted between a source substructure, submitted
to a given external loading, and a receiver substructure. It has been noticed that power flow modes only depend on the
receiver properties. Projection coefficients have been derived which allow characterizing interface forces, especially
by identifying the directions constituting the different power flow paths. Is has been noticed that some of them
constitute a dominant subspace through which most of the power flow is transmitted.

17



The role of moments in power transmission between different substructures has also been underlined. However,
the involved behaviours remain rather complex and difficult to expose. While the proposed weighting procedure is
physically justified and easy to implement, it complicates the determination of the dominant power flow paths, whose
number increases as the vibrational behaviour of the substructures gets more complex. Moreover, considering that
mode-mixing phenomena of the eigenforces slow down as the frequency tends toward the high-frequency band of
the receiver substructure, two procedures have been presented to derive a single fixed power flow mode basis. While
computationally cost effective, it could be interesting to compare the derived results to SEA-like ones, which are based
on low-frequency approaches to derive energy flow coefficients representing modal couplings between substructures
[39, 40].

Finally, considering the useful insights provided by this study on the vibration transfer mechanisms between
components of assembled structures, a robust design approach of structural interfaces has been proposed by the
authors in an upcoming paper. Optimization procedures have been implemented and compared to minimize the power
transmitted between a source and a receiver substructure, with respect to the interface physical parameters, leading to
promising results.
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