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Abstract 

The work describes the design and modeling of a novel pyramidal core with auxetic (negative Poisson’s 
ratio) characteristics able to embed active distributed systems for wave propagation and vibroacoustics 
control. The core is made using Kirigami (Origami + cuts) techniques, which are inspired to the 
cutting/folding processes diffused in Asia from Japan since the 17th century. The Kirigami structure has a 
pyramidal unit cell shape that creates an in-plane negative Poisson’s ratio behavior isotropic behavior. 
Mechanical analysis show that the in-plane elastic properties (Young’s and shear modulus) are higher than 
the out-of-plane ones, a feature not observed in other centresymmetric honeycomb configurations. The 
core shows also evanescence patterns in 2D wave propagation analysis, even when small hysteretic 
damping of the core material is considered.  
Tailoring the dynamical behavior of wave-guide structures can provide an efficient and physically elegant 
approach for optimizing mechanical components with regards to vibroacoustic propagation. Architectured 
materials as pyramidal core Kirigami cells and smart systems can be used to improve the vibroacoustic 
quality of structural components. Recently, much effort has been spent on developing new multi-
functional structures integrating smart cells systems in order to optimize their vibroacoustic behavior over 
a larger frequency band of interest. Metacomposite concept based on shunted piezocomposites patches 
(MFC) glued onto periodic cores also appears as a very promising way for reaching optimal vibroacoustic 
functionalities. 
This paper presents an integrated methodology for optimizing vibrating energy flow in interaction with 
pyramidal core Kirigami equipped with shunted MFC patches. The computation of the Floquet-Bloch 
propagators is used to optimize vibration absorption and band gap structures depending on the core design 
parameters and shunt impedance. We can also compare the obtained efficiency with first published 
realizations.  

1.  INTRODUCTION 

Tailoring the dynamical behavior of one or two-dimensional waveguides can provide efficient and 
physically elegant means to optimize mechanical structures with regards to vibration and acoustic criteria, 
among others. However, achieving this objective may lead to different outcomes depending on the context 
of the optimization. In the preliminary stages of a product's development, one mainly needs optimization 
tools capable of rapidly providing global design directions. Such optimization will also depend on the 
frequency range of interest. One usually discriminates between the low frequency (LF) range and the 
medium frequency (MF) range, especially if vibration and noise are considered. However, it should be 
noted that LF optimization of vibration is more common in the literature than MF optimization. For 
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example, piezoelectric materials and other adaptive and smart systems are employed to improve the 
vibroacoustic quality of structural components, especially in the LF range (see references [Preumont 1997, 
Banks 1996] among many others).  

Recently, much effort has been spent on developing new multi-functional structures integrating 
electro-mechanical systems in order to optimize their vibroacoustic behavior over a larger frequency band 
of interest, among which [Thorp2001] or [Collet 2009]. However, there is still a lack of studies in the 
literature for MF optimization of structural vibration. To that end, the aim of this study is to provide a 
suitable numerical tool for computing wave dispersion in two-dimensional periodic systems incorporating 
damping and shunted piezoelectric patches. The final aim is to allow their optimization in terms of 
vibroacoustic diffusion in two-dimensional waveguides. This paper is also a contribution to the challenges 
of designing and implementing a new class of integrated smart metacomposites capable of improved 
engineering performances in terms of mechanical and vibroacoustic behavior as compared to strictly 
passive structures. 

The definition of a metacomposite combines two different aspects of vibration control. The first aspect 
is connected to periodic structure theories, which are usually associated with metamaterial developments. 
In the field of light propagation, research has explored how to design and construct photonic crystals 
exhibiting photonic band gaps that prevent light from propagating in certain directions with specified 
frequencies. Other efforts have explored creation of photonic crystals able to propagate light in anomalous 
and useful ways (i.e. negative refraction and artificial magnetism). In the acoustic domain, similar studies 
were carried out with the aim of preventing the propagation of elastic waves within a medium. For both 
light and acoustic waves, the band gap is obtained by periodically modulating some electromagnetic or 
mechanical properties [Yang 2002]. 

This technique presents two main problems: the spatial modulation must be of the same order as the 
wavelength in the gap, and the position of the band gap cannot be easily changed since it strongly depends 
on the materials employed (Bragg's band gap). A possible solution for these problems is found using 
composites with locally resonant units. The periodicity of the crystal creates a stop band that can be 
shifted by modifying the properties of the resonators. Liu et al. [Liu 2000] had demonstrated that a 
resonant sonic crystal with building blocks of rubber-coated lead balls exhibits a low-frequency sonic 
band gap, and the resonance can provide a maximum impedance mismatch to shield against airborne 
sound. The same effect can be obtained using Helmholtz resonators as showed by Fang et al. [Fang 2006, 
Ambati 2007] or Hu [Hu 2005]. The same idea was extended in the vibroacoustic domain for the control 
of elastic waves propagating into a waveguide. The resonant units in this case were obtained using RL 
circuits shunted to piezoelectric ceramics embedded on the structure's surface. 

Numerous works have been published [Park 2005] that present analyses of the capability and 
efficiency of a shunted piezoelectric patch for structural damping and wave cancellation. An elegant 
formulation of passive shunting was first proposed by Hagood and Von Flotow [Hagood 1991] and is still 
commonly used. The study showed how a piezoelectric material shunted through a series RL circuit, i.e., a 
resonant shunt, which would exhibit a behavior analogous to the well-known mechanical tuned mass 
damper. Periodically induced impedance-mismatch zones generate broader stop bands, i.e., frequency 
bands where waves are attenuated. The tunable characteristics of shunted piezo-patches allow the 
equivalent mechanical impedance of the structure to be tuned so that stop bands are generated over desired 
frequency ranges. The presence of a resistance in the shunt circuit generates a damped resonance of the 
electrical network. The resistance also allows the energy dissipation mechanism of shunted piezos to be 
exploited, which dampens the amplitude of vibration also outside the stop bands. 

The original periodic shunting concept was numerically demonstrated on rods and fluid-loaded 
axisymmetric shells in [Thorp 2005]. More recently, this strategy was extended to plates [Casadei 2010, 
Spadoni 2009, Chen 2013], where the Bloch theorem was used to predict the dispersion properties of the 
resulting periodic assembly. However the limitation of this approach is the narrow-band effectiveness of 
resonant circuits. For that reason a different circuit layout was proposed. A very effective method is based 
on the use of negative capacitance shunts, as originally proposed by Forward [Forward 1979]. In this 
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configuration, a piezoelectric patch is shunted through a passive circuit to a negative impedance converter. 
In this way, the internal capacitance of the piezoelectric ceramic is artificially canceled, and the 
impedance of the shunt circuit reduces to that of the passive circuit. Optimization of the electrical 
impedance for modal damping is well described in [Livet 2011]. Although the negative capacitance 
shunting strategy has been experimentally validated, it must be used with caution since it requires active 
elements that can destabilize the structure if improperly tuned. Efficiency band and stability can be 
improved by using specific parameters and circuit architecture [Beck 2014]. This technique requires in 
fact to tune the circuit very close to the stability limit [Fukada 2004, Kim 2006]. The second concept 
includes the definition of composite conceived in a broader sense, in which shunted piezoelectric 
materials, electronic components, controllers and the structure are intimately connected to each other. In 
this respect, the notion of programmable matter coined by Toffoli [Toffoli 1991] to refer to an ensemble 
of computing elements arranged in space is now extended to smart materials based on distributed 
piezoelectric actuators able to modify the inherent vibroacoustic properties based on an input signal. 
Applications of distributed shunted patchs concept on controlling vibroacoustic energy diffusion is really 
novative and can induced significant capacity to absorb or reflect vibration field [Tateo 2014, Tateo 2014, 
Collet 2014]. 

On the other hand, innovative manufacturing techniques have been recently applied to composites 
materials, like the Kirigami process. Kirigami is the ancient Japanese art of folding and cutting paper, and 
it has been applied to produce complex 3D cellular structures using modular moulding techniques and 
mathematical representation of the honeycomb lattice [Scarpa 2013], with a special topology resulting in 
the auxetic character of the structure. Auxetic solids have been extensively studied during the past two 
decades35 36. The term ‘auxetics’ indicates a wide range of mate-rials and structures exhibiting a negative 
Poisson’s ratio. In cellular configurations, a negative Poisson’s ratio can be achieved in re-entrant centre-
symmetric (butterfly) honeycombs [Gibson 1982, Scarpa 2000], rotating rectangles and triangles [Grima 
2011], as well as arrow-head [Larsen 1997] and star-shaped configurations [Grima 2005]. The centre-
symmetric auxetic configuration has also been considered as a basis for gradient cellular structures [Lira 
2011, Prall 1996]. All these strategies have been investigated in terms of manufacturing possibilities and 
mechanical performances, mainly in the static domain. However, new research activities in the areas of 
vibroacoustics of auxetic structures have been performed in recent years. The negative Poisson’s ratio, 
which provides an unusual large volume deformation during loading induces tunable wave propagation 
directivities not commonly observed in classical systems. Recently, some Kirigami auxetic cellular 
structures have also been deeply investigated in terms of wave propagation [Scarpa 2013] and the concept 
has been pushed toward its limits with a null Poisson’s ratio that induces negative stiffness re-gime under 
nonlinear deformation and high energy dissipation under cyclic loading [Virk 2013]. 

In this paper, the metacomposite structure of interest consists of shunted piezoelectric patches glued 
onto a periodical distribution of auxetic composite cells. This combinaison of both property induced by 
auxeticity and negative shunt circuit is analyzed in terms of modification of waves dispersion, group 
velocity and absorption. This controlling capability is obtained by correctly tuning the parameters of the 
external circuit by which almost arbitrary effective structural impedance may be obtained. 

2. Piezo-Elasto Dynamical Application of the Floquet-Bloch Theorem 

In this section the application of the celebrated Floquet-Bloch theorem is presented for piezo-
elastodynamic problems. Based on the well-known results obtained by Floquet [Floquet 1883] for 
monodimensional problems and later rediscovered by Bloch [Bloch 1928] in multidimensional problems, 
an original application to bi-dimensional piezo-elastodynamical problem has been proposed recently 
[Collet 2010]. This formulation leads to very general numerical implementation for computing waves 
dispersion for periodically smart distributed mechanical systems incorporating electronic components, 



ICAST2014: 25nd International Conference on Adaptive Structures and Technologies 
October 6-8th, 2014, The Hague, The Netherlands 

 
 

4 
 

damping effects or any frequency-dependent characteristics. The main ideas of the approach are recalled 
here, together with the specific points related to the inclusion of piezoelectric effects in the model. 

2.1  Bloch theorem 

The Bloch theorem, in its original version, gives the form of homogeneous states of Schrödinger equation 
with periodic potential. This theorem can be considered as a multidimensional application of the Floquet 
theorem [Joannopoulos, 1995]. The periodic medium (or potential) properties satisfy 

 where  is a matrice grouping the three lattice's basis vectors 
(in 3D). The primitive cell is defined as a convex polyhedron. The reciprocal unit cell is limited by the 

reciprocal lattice vector defined by the three vectors  so that: .  

The Bloch Theorem stipulates that any function can be expressed as  

 

where the Bloch amplitude is periodic and has the representations  

 

where stands for the Fourier transform of and  is the reciprocal 
lattice matrix in the later. It can also be demonstrated that the mean value of the Bloch amplitude is the 
Fourier amplitude of the initial function for the corresponding wave vector. Using the Bloch theorem to 
represent the solutions of periodical partial derivative equations implies that all derivatives are shifted by 

in the sense given by the spatial operator.  

Based on that theorem, the expansion functions can be defined. They are called the Bloch 
eigen modes, and can be used to represent the Bloch amplitudes of any solution of the corresponding 
partial derivative equation as  

 
and at the same time diagonalize the partial derivative equations. The expansion coefficients depend on 
the disturbance and on the induced wave vector (see [Bensoussan, 1978] for details). 

2.2  Application to piezo-elastodynamic 

Let us consider a piezo-elastodynamic problem made of infinite periodic distribution of unitary cell 

described in figure 1. The harmonic homogeneous dynamical equilibrium of system is driven by the 

following partial derivative equations: 

 

where is the electric displacement. 



ICAST2014: 25nd International Conference on Adaptive Structures and Technologies 
October 6-8th, 2014, The Hague, The Netherlands 

 
 

5 
 

 

Figure 1. 3D piezocomposite periodic auxetic cell 

The linear constitutive material behavior relationships can be written as 

 

where  is the electric field vector (V being the voltage). We add to this set of equilibrium 
equations an output expression 

 
allowing the introduction of the charge measurement on the piezoelectric's top electrode and hence the 
dual counterpart of the imposed electrical Dirichlet boundary condition for applying the shunt impedance 
operator. 
The equations above are consistent for each kind of material to the extent that null piezoelectric and 
permittivity tensors can be used when passive materials are considered. All of these tensors also depend 
on the spatial location vector and are periodic. By applying a Fourier transformation, the piezo-
elastodynamic equilibrium can be rewritten in the frequency domain. As the problem is 2D infinitely 
periodic, mechanical boundary conditions are included in the formulation, while electrostatic boundary 
conditions have to be considered on each cell: 

 
The top electrode applied feedback voltage depends on the shunt characteristic and on the collected 
charges, it can be expressed in the Fourier space by: 

 
 

Considering a primitive cell of the periodic problem, the Bloch eigenmodes and the dispersion functions 
can be computed by searching the eigen solutions of the homogeneous problem with mechanical periodic 
boundary conditions and electric ones as: 
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By introducing this expression in the piezo-elastodynamic equations,  and 

can be found by solving the generalized eigenvalues problem: 
 

 
with 

 
where 

 
The proposed formulation is based on the computation of the Floquet vectors, instead of computing the 
Floquet propagators commonly used for elastodynamic applications. The full 2D waves dispersions 
functions can then be obtained, while damping and electrical impedance can clearly be introduced into the 
piezo-elastodynamic operator. The adopted methodology allows the computation of the complete complex 
map of the dispersion curves incorporating computation of evanescent waves and allowing the 
introduction of damping and shunt operator if any [Collet 2011]. 
 
2.4 Computation of the evanescence and damped power flow criteria 
 
One aim of this paper is to provide a numerical methodology for describing particular behavior of the 
energy flow into the periodically auxetic structure. For doing this, we need to define a suitable indicator 
for distinguishing propagative and evanescent behavior especially when damped system are considered.  
The capability of a given Bloch wave to transport energy is given by its group velocity. Indeed, it 
indicates how energy is transported into the considered system and allow to distinguish the 'propagative' 
and 'evanescent' waves. If a Bloch eigen solution is considered, the associated group velocity vector 
[Maysenholder 1994] is given by 
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where is the spatial and time average respectively on one cell and one period of time, is the 
density of energy flow, the mean intensity and etot, Etot  the total piezomechanical energy and its time 
average on a period (see [Maysenholder 1994] for details). 
The intensity vector is expressed as 

 
As the spatio-temporal average of the system Lagragian is null [Maysenholder 1994], the total energy 

average is approximated by only computing the kinetic energy average . 

3. Applications for computing wave dispersion into Shunted Piezoelectric Auxetic lattice 

The proposed methodology is used for the analysis of wave dispersion into the bidimensional auxetic 
lattice. It consists of an infinite periodic 2D waveguide made of a periodic distribution of the unitary cell 
presented in figure 1. The system is made of a 2.5mm thick plate assembly made of isotropic damped 
polymer (nu=0.4, E=30e9Pa, rho=1600kg/m^3) with a hysteretic damping factor of $0.001$. The cell 
surface area is 120mm^2. 
On all lateral branches, we add a piezoelectric patch shunted on a specific circuit made of a resistance R 
and a negative capacitance Cneg. These parameters are tuned to induce different wave dispersion effects 
and corresponding vibration behavior as explained in [Tateo 2014]. 
The method allows us to compute eigen frequencies corresponding to any wave vector described in 
cylindric coordinates system by its radius k and its angle phi in the whole first Brillouin domain. These 
wave numbers depending on the frequency and electric components R and Cneg. 

3.1 Optimal Cneg computation 

As explained in [Livet 2011] and used for experimental implementation [Tateo 2014, Collet 2014, Beck 
2014], the optimal tuning for the negative capacitance term is given by the cell instability point. In fact 
this parameter induces a decrease in the effective cell stiffness until instability occurs. On figure 2 we 
show evolutions of the first eigenfrequencies of the clamped-clamped cell depending on the negative 
capacitance ratio alpha defined as Cneg= - alpha Co where Co=12.68nF is the effective capacitance of the 
glued piezoelectric patch. We observe that one eigen frequency becomes imaginary for alpha=1.64. This 
corresponds to the best point to tune the imaginary part of the electrical impedance [Livet 2011, Tateo 
2014, Collet 2014]. Moreover the value of R allows impedance tuning in the frequency band of interest 
[Beck2014] and can be used to improve absorption capabilities of the metacomposite [Tateo 2014]. In the 
following computations we use R=0 (pure Cneg circuit) or R=500 Ohms. 

3.2 Dispersion along Gamma-X direction of the system 

The wave's dispersion curves of the system along the Gamma-X direction are plotted on Figure 3 for 
closed circuit, pure Cneg circuit and R-Cneg configuration. This figure shows the real part the dispersion 
curves of propagative modes. The evanescent waves was filtered by using criterion based on the ratio 
between the real and imaginary parts of the obtained complex wave numbers. The obtained results 
indicate a deep complexity of the vibroacoustic behavior of the studied system with a first band gap 
between 2300 and 3200Hz. 
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Figure 2. Eigenfrequencies of clamped-clamped cell as a function of the negative capacitance ratio alpha 

Figure 3. Dispersion curves of propagative modes of the system 
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All modes corresponding to each principal branches numbered 1 to 6 on the figure 3 are given on figures 4 
and 5. 

 
Figure 4. Mode shapes of branches 1, 2 and 3 

   

Figure 5. Mode shapes of branches 4, 5 and 6 

We underline that: 
• the pure Cneg circuit tends to increase wave phase velocity and modify location and size of the 

band gap; 
• the RCneg circuit does not induce strong modifications of the dispersion curves; 
• the new Cneg branch 5' crossing the initial band gap corresponds to a mode shape totally different 

than branch 5 existing with short circuit (see figure 6). The Cneg shunt cancels propagation of 
branch 5 and strongly modify those of branch 4. In this sense, the shunt enlarge the initial band 
gap. 

 
Figure 6. Mode shape of branch 5' created by pure Cneg shunt 

 
The wave's imaginary part of dispersions curves along the Gamma-X direction are plotted on Figure 7. 
We can point out that the RCneg circuit greatly improves the damping on branches 1, 2, 3 while the 
increase on branches 4, 5 and 6 is smaller than the one obtained in the pure Cneg configuration. The pure 
Cneg circuit creates a strongly damped new branch 5' and modifies all the dispersion properties in the 
higher frequencies. 
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Figure 7. Imaginary Dispersion curves of propagative modes of the studied system  

 

4 Concluding remarks 

The kirigami pyramidal auxetic active core described in this work has shown the following characteristics: 

(1) The lattice has an in-plane auxetic behavior, with values of the negative Poisson’s ratio depending on 
the geometry parameters of the cellular configurations. The lattice includes shunted piezoelectric 
elements. 

(2) The shunt circuit is constituted by a negative capacitance and a resistor. The value of the capacitance 
has been optimized using stability limit considerations. Pure negative capacitance shunt and 
resistance/negative capacitance shunt have been compared to the short circuit configuration. 

(3) The pure Cneg circuit tends to increase wave phase velocity and modify location and size of the band 
gap; it creates a strongly damped new branch and modifies all the dispersion properties in the higher 
frequency range. An effect of band gap enlargement has been observed. 

(4) The RCneg circuit does not induce strong modifications of the dispersion curves; but greatly improves 
the damping on branches 1, 2, 3 while the increase on branches 4, 5 and 6 is smaller than the one obtained 
in the pure Cneg configuration. 
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