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Abstract

The work describes the design and modeling of a&lnpyramidal core with auxetic (negative Poisson’s
ratio) characteristics able to embed active disted systems for wave propagation and vibroacaustic
control. The core is made using Kirigami (Origamictits) techniques, which are inspired to the
cutting/folding processes diffused in Asia from aasince the 17century. The Kirigami structure has a
pyramidal unit cell shape that creates an in-plaegative Poisson’s ratio behavior isotropic behavio
Mechanical analysis show that the in-plane elgstiperties (Young's and shear modulus) are higtmean t
the out-of-plane ones, a feature not observed herotentresymmetric honeycomb configurations. The
core shows also evanescence patterns in 2D wayeageaton analysis, even when small hysteretic
damping of the core material is considered.

Tailoring the dynamical behavior of wave-guide staues can provide an efficient and physically atdg
approach for optimizing mechanical components wéthards to vibroacoustic propagation. Architectured
materials as pyramidal core Kirigami cells and gnsgstems can be used to improve the vibroacoustic
quality of structural components. Recently, mucforefhas been spent on developing new multi-
functional structures integrating smart cells systén order to optimize their vibroacoustic behaweer

a larger frequency band of interest. Metacompasitecept based on shunted piezocomposites patches
(MFC) glued onto periodic cores also appears arapromising way for reaching optimal vibroacoasti
functionalities.

This paper presents an integrated methodology fitimizing vibrating energy flow in interaction with
pyramidal core Kirigami equipped with shunted MF&tghes. The computation of the Floquet-Bloch
propagators is used to optimize vibration absonptiod band gap structures depending on the coigndes
parameters and shunt impedance. We can also coniparebtained efficiency with first published
realizations.

1. INTRODUCTION

Tailoring the dynamical behavior of one or two-dima®nal waveguides can provide efficient and
physically elegant means to optimize mechanicakstres with regards to vibration and acousticoet
among others. However, achieving this objective teay to different outcomes depending on the cantex
of the optimization. In the preliminary stages gfraduct's development, one mainly needs optintnati
tools capable of rapidly providing global desigmedtions. Such optimization will also depend on the
frequency range of interest. One usually discritgigebetween the low frequency (LF) range and the
medium frequency (MF) range, especially if vibratiand noise are considered. However, it should be
noted that LF optimization of vibration is more aoon in the literature than MF optimization. For
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example, piezoelectric materials and other adapdivé smart systems are employed to improve the
vibroacoustic quality of structural components,exsglly in the LF range (see references [Preumgav L
Banks 1996] among many others).

Recently, much effort has been spent on developiegy multi-functional structures integrating
electro-mechanical systems in order to optimizé thibroacoustic behavior over a larger frequenagdb
of interest, among which [Thorp2001] or [Collet 200However, there is still a lack of studies ire th
literature for MF optimization of structural vibiam. To that end, the aim of this study is to pdavia
suitable numerical tool for computing wave dispansin two-dimensional periodic systems incorpoigtin
damping and shunted piezoelectric patches. The &m is to allow their optimization in terms of
vibroacoustic diffusion in two-dimensional wavegesd This paper is also a contribution to the chghs
of designing and implementing a new class of irgegt smart metacomposites capable of improved
engineering performances in terms of mechanical \dahtbacoustic behavior as compared to strictly
passive structures.

The definition of a metacomposite combines twoedéht aspects of vibration control. The first aspec
is connected to periodic structure theories, whighusually associated with metamaterial developsnen
In the field of light propagation, research haslesgd how to design and construct photonic crystals
exhibiting photonic band gaps that prevent liglunfrpropagating in certain directions with specified
frequencies. Other efforts have explored creatfgrhotonic crystals able to propagate light in antouas
and useful ways (i.e. negative refraction andieiaif magnetism). In the acoustic domain, simitardies
were carried out with the aim of preventing thepagation of elastic waves within a medium. For both
light and acoustic waves, the band gap is obtabyegeriodically modulating some electromagnetic or
mechanical properties [Yang 2002].

This technique presents two main problems: theiapabdulation must be of the same order as the
wavelength in the gap, and the position of the lgapalcannot be easily changed since it strongleiids
on the materials employed (Bragg's band gap). Asiplss solution for these problems is found using
composites with locally resonant units. The pegigiof the crystal creates a stop band that can be
shifted by modifying the properties of the resomatd.iu et al. [Liu 2000] had demonstrated that a
resonant sonic crystal with building blocks of rablooated lead balls exhibits a low-frequency sonic
band gap, and the resonance can provide a maximypadance mismatch to shield against airborne
sound. The same effect can be obtained using Héimtesonators as showed by Fang et al. [Fang 2006,
Ambati 2007] or Hu [Hu 2005]. The same idea waeded in the vibroacoustic domain for the control
of elastic waves propagating into a waveguide. fds®nant units in this case were obtained using RL
circuits shunted to piezoelectric ceramics embedutetthe structure's surface.

Numerous works have been published [Park 2005] ginesent analyses of the capability and
efficiency of a shunted piezoelectric patch foustaral damping and wave cancellation. An elegant
formulation of passive shunting was first propobgdHagood and Von Flotow [Hagood 1991] and is still
commonly used. The study showed how a piezoelatierial shunted through a series RL circuit, ae.
resonant shunt, which would exhibit a behavior egailis to the well-known mechanical tuned mass
damper. Periodically induced impedance-mismatchegogenerate broader stop bands, i.e., frequency
bands where waves are attenuated. The tunable cobiastics of shunted piezo-patches allow the
equivalent mechanical impedance of the structubettuned so that stop bands are generated ovezdles
frequency ranges. The presence of a resistandeeishunt circuit generates a damped resonances of th
electrical network. The resistance also allowsehergy dissipation mechanism of shunted piezoseto b
exploited, which dampens the amplitude of vibratidso outside the stop bands.

The original periodic shunting concept was numdsicdemonstrated on rods and fluid-loaded
axisymmetric shells in [Thorp 2005]. More recentlyis strategy was extended to plates [Casadei,2010
Spadoni 2009, Chen 2013], where the Bloch theoras wsed to predict the dispersion properties of the
resulting periodic assembly. However the limitatifrthis approach is the narrow-band effectiverass
resonant circuits. For that reason a differentuiidayout was proposed. A very effective methotlased
on the use of negative capacitance shunts, asmalligiproposed by Forward [Forward 1979]. In this
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configuration, a piezoelectric patch is shuntedulgh a passive circuit to a negative impedanceente

In this way, the internal capacitance of the piéacteic ceramic is artificially canceled, and the
impedance of the shunt circuit reduces to thathef passive circuit. Optimization of the electrical
impedance for modal damping is well described iivgt 2011]. Although the negative capacitance
shunting strategy has been experimentally validatedust be used with caution since it requiretivac
elements that can destabilize the structure if aperly tuned. Efficiency band and stability can be
improved by using specific parameters and circréhidecture [Beck 2014]. This technique requires in
fact to tune the circuit very close to the stapilimit [Fukada 2004, Kim 2006]. The second concept
includes the definition of composite conceived inb@pader sense, in which shunted piezoelectric
materials, electronic components, controllers dedstructure are intimately connected to each other
this respect, the notion of programmable mattenembiby Toffoli [Toffoli 1991] to refer to an enselab

of computing elements arranged in space is nowneete to smart materials based on distributed
piezoelectric actuators able to modify the inhergbtroacoustic properties based on an input signal.
Applications of distributed shunted patchs con@ptontrolling vibroacoustic energy diffusion islg
novative and can induced significant capacity teoal or reflect vibration field [Tateo 2014, Ta2@l4,
Collet 2014].

On the other hand, innovative manufacturing teahesghave been recently applied to composites
materials, like the Kirigami process. Kirigami ietancient Japanese art of folding and cutting mpamel
it has been applied to produce complex 3D cellstauctures using modular moulding techniques and
mathematical representation of the honeycomb éaficarpa 2013], with a special topology resulimg
the auxetic character of the structure. Auxetiédsohave been extensively studied during the past t
decades35 36. The term ‘auxetics’ indicates a wadge of mate-rials and structures exhibiting zatieg
Poisson’s ratio. In cellular configurations, a nagaPoisson’s ratio can be achieved in re-entcantre-
symmetric (butterfly) honeycombs [Gibson 1982, $aa?000], rotating rectangles and triangles [Grima
2011], as well as arrow-head [Larsen 1997] andstaped configurations [Grima 2005]. The centre-
symmetric auxetic configuration has also been dmmed as a basis for gradient cellular structures [
2011, Prall 1996]. All these strategies have beenstigated in terms of manufacturing possibilites
mechanical performances, mainly in the static damidiowever, new research activities in the areas of
vibroacoustics of auxetic structures have beenopedd in recent years. The negative Poisson’s,ratio
which provides an unusual large volume deformatiaring loading induces tunable wave propagation
directivities not commonly observed in classicabteyns. Recently, some Kirigami auxetic cellular
structures have also been deeply investigatedtinstef wave propagation [Scarpa 2013] and the qunce
has been pushed toward its limits with a null Rmi&sratio that induces negative stiffness re-gimder
nonlinear deformation and high energy dissipatinder cyclic loading [Virk 2013].

In this paper, the metacomposite structure of @sieconsists of shunted piezoelectric patches glued
onto a periodical distribution of auxetic compositdls. This combinaison of both property induced b
auxeticity and negative shunt circuit is analyzedtéarms of modification of waves dispersion, group
velocity and absorption. This controlling capalilié obtained by correctly tuning the parametershef
external circuit by which almost arbitrary effedistructural impedance may be obtained.

2. Piezo-Elasto Dynamical Application of the Floquet-Bloch Theorem

In this section the application of the celebrateldgiet-Bloch theorem is presented for piezo-
elastodynamic problems. Based on the well-knownuli®sobtained by Floquet [Floquet 1883] for
monodimensional problems and later rediscovereBlbgh [Bloch 1928] in multidimensional problems,
an original application to bi-dimensional piezosttalynamical problem has been proposed recently
[Collet 2010]. This formulation leads to very geslenumerical implementation for computing waves
dispersion for periodically smart distributed megbal systems incorporating electronic components,
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damping effects or any frequency-dependent chaisiits. The main ideas of the approach are retalle
here, together with the specific points relatethwinclusion of piezoelectric effects in the model

2.1 Bloch theorem

The Bloch theorem, in its original version, givee form of homogeneous states of Schrédinger emuati
with periodic potential. This theorem can be coesd as a multidimensional application of the Feiqu
theorem [Joannopoulos, 1995]. The periodic mediuraor (potential) properties satisfy

M(x + Rom) = M(x), m € Z° where R is a matrice grouping the three latticesidvectors
(in 3D). The primitive cell is defined as a conyexdyhedron. The reciprocal unit cell is limited the

. . . . 7 . — DA
reciprocal lattice vector defined by the three oex 9j sothat™i-9i = <703

The Bloch Theorem stipulates that any func ()  paexpressed as

itie) = / e*ra(x, k)dk
J oy,

where the Bloch amplituc u(x, k) ;g periodic and has the representatitions
a(z, k)= Y a(k+GCn)e"",

H—'Z"
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‘ E “ Pn Utk +Rn)
3
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where u(k) stands for the Fourier transform %(Z) 16 = [gl » 92, 93] hés rteciprocal
lattice matrix in the later. It can also be demmtsd that the mean value of the Bloch amplitudinés
Fourier amplitude of the initial function for thercesponding wave vector. Using the Bloch theorem t
represent the solutions of periodical partial dafiixe equations implies that all derivatives aritath by

k in the sense given by the spatial operator.

Based on that theorem, the expansion funct Um(, k) beadefined. They are called the Bloch
eigen modes, and can be used to represent the Bloglitudes of any solution of the corresponding
partial derivative equation as

Z lll” IH l A)

m
and at the same time diagonalize the partial dévivaquations. The expansion coefficients depend o
the disturbance and on the induced wave vector{Bmesoussan, 1978] for details).

2.2 Application to piezo-dlastodynamic

Let us consider a piezo-elastodynamic problem made of infinite periodic distribution of unitary cell
described in figure 1. The harmonic homogeneous dynamical equilibrium of system is driven by the
following partial derivative equations:

pw(x,t) —Vao(x,t) =0
—VD(x,t)=0
D(x,t)

where is the electric displacement.
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Piczoelectric patch

ep =02 mm

Figure 1. 3D piezocomposite periodic auxetic cell

The linear constitutive material behavior relationships can be written as
o =Cg(x)e—el (z)E,
D =e(x)e+es(x)E,

where E=-VV is the electric field vectoM being the voltage). We add to this set of equilifor
equations an output expression

¢’=— | D.ndS
J S,

allowing the introduction of the charge measurermmnthe piezoelectric's top electrode and hence the
dual counterpart of the imposed electrical Dirittdleundary condition for applying the shunt impesan
operator.
The equations above are consistent for each kinchaikrial to the extent that null piezoelectric and
permittivity tensors can be used when passive liadgesire considered. All of these tensors also migpe
on the spatial location vector and are periodic. &plying a Fourier transformation, the piezo-
elastodynamic equilibrium can be rewritten in thegfiency domain. As the problem is 2D infinitely
periodic, mechanical boundary conditions are inetuih the formulation, while electrostatic boundary
conditions have to be considered on each cell:

V(z,w)=0 Ve €Sy

V(e,w) =V°(w) Vx €S

Dn(x,w)=0 YV € 5
The top electrode applied feedback voltage depemdshe shunt characteristic and on the collected
charges, it can be expressed in the Fourier space b

V(w) = —Z(w)a" @)

Considering a primitive cell of the periodic pratethe Bloch eigenmodes and the dispersion fungtion
can be computed by searching the eigen solutiotiseofiomogeneous problem with mechanical periodic
boundary conditions and electric ones as:
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wixr _—
u(x) = [ ( ) ] _ (ll‘n.k(;l?)(:l’\..l

By introducing this expression in the piezo-elagtwminic equations,u"",.k(117). Var(T)  ang

w’n(l"' ) can be found by solving the generalized eigenvahuelslem:

0= pwi(k)w,i(x)+ VOV ymwyi(x) + Vel VV, 1 ()
+ik [(CV gymwn i (T)). @ + V(CEp k()]
+'A [(VeT nl\( ). ®(eTVV, i(z)). 2]
[((' nk(x)).® 4+ Vog(x)( 'T‘I’)KI’} Vo € Q,

0 = —VeVymwni(z) + VesVVi(z)
—ik [V(eZnx(x)) + (eVsym(wn i())).P]
+ik [(VesVai(x)).- @ + (esVVii)(z). 2]
+k2 [(eZnk(x)).® — (esPVoi(x)).®] VE € Q,,

with
w, (x — Rm) =w,(x) Y €S, meZ?
Var(z) =0 VY € Sy,
‘n.l\-(-l') = —Z(Iw)qz,‘ Yax = S{_
Dn=0 Yo €95,
where
cos(@)
k =k | sin(o) — kP

0

The proposed formulation is based on the computaifahe Floquet vectors, instead of computing the
Floquet propagators commonly used for elastodynaapiglications. The full 2D waves dispersions
functions can then be obtained, while damping dectgcal impedance can clearly be introduced thto
piezo-elastodynamic operator. The adopted methggia@tows the computation of the complete complex
map of the dispersion curves incorporating computatof evanescent waves and allowing the
introduction of damping and shunt operator if a@gl[et 2011].

2.4 Computation of the evanescence and damped power flow criteria

One aim of this paper is to provide a numericalhoeology for describing particular behavior of the
energy flow into the periodically auxetic structuk®r doing this, we need to define a suitabledattir

for distinguishing propagative and evanescent hiehaspecially when damped system are considered.
The capability of a given Bloch wave to transpanemgy is given by its group velocity. Indeed, it
indicates how energy is transported into the careid system and allow to distinguish the 'propagati
and 'evanescent' waves. If a Bloch eigen solutioconsidered, the associated group velocity vector
[Maysenholder 1994] is given by

), Q) = 6 = <<S>> _ <I>
Sagri =i ((etor))  (Etot)
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where <<>> is the spatial and time average respectioelyne cell and one period of tirS s the
density of energy flowl the mean intensity ang Eo the total piezomechanical energy and its time
average on a period (see [Maysenholder 1994] fizilde

The intensity vector is expressed as

w - (/SZ
(I,) = —=Re / Clen(x) + k=2, (x)).(w) ()=
—) 9 ‘UI

As the spatio-temporal average of the system Laagmaig null [Maysenholder 1994], the total energy

average is approximated by only computing the kirestergy averag<Emr>
3. Applicationsfor computing wave dispersion into Shunted Piezoelectric Auxetic lattice

The proposed methodology is used for the analysiwave dispersion into the bidimensional auxetic
lattice. It consists of an infinite periodic 2D vemuide made of a periodic distribution of the unyiteell
presented in figure 1. The system is made of a & 5hick plate assembly made of isotropic damped
polymer (nu=0.4, E=30e9Pa, rho=1600kg/m”3) withyatdretic damping factor of $0.001$. The cell
surface area is 120mm~”2.

On all lateral branches, we add a piezoelectrictpahunted on a specific circuit made of a resigdR
and a negative capacitance Cneg. These parametehsnad to induce different wave dispersion effect
and corresponding vibration behavior as explaindd ateo 2014].

The method allows us to compute eigen frequenciesegponding to any wave vector described in
cylindric coordinates system by its radius k amsdaibgle phi in the whole first Brillouin domain. d3e
wave numbers depending on the frequency and eledmponents R and Cneg.

3.1 Optimal Cneg computation

As explained in [Livet 2011] and used for experitaémmplementation [Tateo 2014, Collet 2014, Beck
2014], the optimal tuning for the negative capaitaterm is given by the cell instability point. flrct

this parameter induces a decrease in the effectllestiffness until instability occurs. On figugwe
show evolutions of the first eigenfrequencies af tlamped-clamped cell depending on the negative
capacitance ratio alpha defined as Cnheg= - alphaitg&re Co=12.68nF is the effective capacitanchef t
glued piezoelectric patch. We observe that oneneliggiuency becomes imaginary for alpha=1.64. This
corresponds to the best point to tune the imagipary of the electrical impedance [Livet 2011, Bate
2014, Collet 2014]. Moreover the value of R allowsedance tuning in the frequency band of interest
[Beck2014] and can be used to improve absorptipaltiities of the metacomposite [Tateo 2014]. la th
following computations we use R=0 (pure Cneg chianmi R=500 Ohms.

3.2 Dispersion along Gamma-X direction of the system

The wave's dispersion curves of the system aloeg@hmma-X direction are plotted on Figure 3 for
closed circuit, pure Cneg circuit and R-Cneg canfigion. This figure shows the real part the disjoer
curves of propagative modes. The evanescent wauassfitiered by using criterion based on the ratio
between the real and imaginary parts of the obthicemplex wave numbers. The obtained results
indicate a deep complexity of the vibroacoustic éhédr of the studied system with a first band gap
between 2300 and 3200Hz.



Figure 2. Eigenfrequencies of clamped-clamped cell as a iomcif the negative capacitance ratio alpha
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All modes corresponding to each principal branchesbered 1 to 6 on the figure 3 are given on figdre
and 5.

Figure 5. Mode shapes of branches 4, 5 and 6

We underline that:

» the pure Cneg circuit tends to increase wave phekeity and modify location and size of the
band gap;

« the RCneg circuit does not induce strong modifaregtiof the dispersion curves;

» the new Cneg branch 5' crossing the initial ban@amresponds to a mode shape totally different
than branch 5 existing with short circuit (see feg®). The Cnheg shunt cancels propagation of
branch 5 and strongly modify those of branch 4this sense, the shunt enlarge the initial band
gap.

Figure 6. Mode shape of branch 5' created by pure Cneg shunt

The wave's imaginary part of dispersions curvesgline Gamma-X direction are plotted on Figure 7.
We can point out that the RCneg circuit greatly rowes the damping on branches 1, 2, 3 while the
increase on branches 4, 5 and 6 is smaller thanrthebtained in the pure Cneg configuration. Tine p
Cneg circuit creates a strongly damped new bran@nd modifies all the dispersion properties in the
higher frequencies.
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Figure 7. Imaginary Dispersion curves of propagative modehefstudied system

4 Concluding remarks
The kirigami pyramidal auxetic active core desalibethis work has shown the following charactéssst

(1) The lattice has an in-plane auxetic behavidtt) walues of the negative Poisson’s ratio dependim
the geometry parameters of the cellular configareti The lattice includes shunted piezoelectric
elements.

(2) The shunt circuit is constituted by a negatiapacitance and a resistor. The value of the capae
has been optimized using stability limit considenas. Pure negative capacitance shunt and
resistance/negative capacitance shunt have beguacedito the short circuit configuration.

(3) The pure Cneg circuit tends to increase wawslvelocity and modify location and size of thada
gap; it creates a strongly damped new branch andifiew all the dispersion properties in the higher
frequency range. An effect of band gap enlargerasteen observed.

(4) The RCneg circuit does not induce strong modifons of the dispersion curves; but greatly impso

the damping on branches 1, 2, 3 while the increadaranches 4, 5 and 6 is smaller than the onénelota
in the pure Cneg configuration.
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