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Exponential stabilization of boundary controlled
port-Hamiltonian systems with dynamic feedback

Héctor Ramı́rez∗, Yann Le Gorrec∗, Alessandro Macchelli† and
Hans Zwart‡

Abstract—It is shown that a strictly-input passive linear finite di-
mensional controller exponentially stabilizes a large class of partial
differential equations actuated at the boundary of a one dimensional
spatial domain. This follows since the controller imposes exponential
dissipation of the total energy. The result can by use for control synthesis
and for the stability analysis of complex systems modeled by sets of
coupled PDE’s and ODE’s. The result is specialized to port-Hamiltonian
control systems and a simplified DNA-manipulation process is used to
illustrate the result.

I. INTRODUCTION

Boundary control systems (BCS) [1]–[4] are a class of abstract
systems that model partial differential equations (PDEs) with the
control and the observations at the boundary of their spatial domain.
A large class of physical systems may be modelled as BCS, and
very powerful results on well-posedness and stability of solutions
have been reported in recent works for BCS formulated using the
framework of infinite dimensional port-Hamiltonian systems, [5]–
[9]. These results are promising since they provide constructive tech-
niques for control design. More specifically, in [7] it has been shown
that a clever choice of the boundary conditions (static feedback)
renders the BCS exponentially stable, and in [6], [8] it has been shown
that a power preserving interconnection with a finite dimensional
Strictly Positive Real (SPR) linear system results in an asymptotically
stable BCS on an extended state space. The SPR controller is used to
assure the asymptotic stability, which is not straightforward to prove
since it requires the application of LaSalle’s invariance Theorem.

In this technical note, we show that a BCS with linear dynamic
boundary control is exponentially stable provided that the controller
is exponentially stable and strictly input passive. The closed-loop
system is then an exponentially stable BCS on an extended state
space. This follows from two key results. First, that the power
preserving interconnection between BCS and SPR systems (and
consequently between BCS and the class of controllers we consider)
defines again a BCS on an extended space; and, second, that if the
dissipated energy of the controller bounds the energy flow at the
boundaries of the spatial domain the closed-loop BCS is exponentially
stable. These results allow to elegantly, and quite easily, prove the
exponential stability for a large class of linear controllers, in particular
those defined by port-Hamiltonian control system.

The technical note is organized as follows. Section II introduces
boundary controlled-port Hamiltonian systems and the definition of
a class of BCS on an extended state space using dynamic boundary
control. In Section III, a set of Lemmas derived from the definition
of the finite dimensional control system are presented. Section IV
presents the exponential stability proof of the closed-loop system.
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In Section V the control design is illustrated on a simplified DNA-
manipulation process. Finally, Section VI provides some concluding
remarks and comments on future work.

II. BOUNDARY CONTROL SYSTEMS

In the following, we briefly recall the main definitions of the BCS
of interest. The reader is referred to [5], [7] and in particular to
[8], [9] for further details. For comprehensive background on infinite
dimensional linear system theory and functional analysis the reader
is referred, respectively to [2]–[4] and [10]. We will follow the same
notation as in [7], thus Mn(H) denotes the space of square n × n
matrices whose entries lie in the vector space H. By 〈·, ·〉R we denote
the inner product on R or Rn, and 〈·, ·〉L2 , or simply 〈·, ·〉 denotes
the standard inner product on L2(a, b,Rn). The Sobolev space of
order k is denoted by Hk(a, b,Rn). We say that a symmetric matrix
is positive definite, in short M > 0, if all its eigenvalues are positive,
and positive semi-definite, in short M ≥ 0 if its eigenvalues are non-
negative. A self-adjoint operator L is coercive on an inner product
space X if there exists an ε > 0 such that L ≥ εI .

The systems under study are described by the following PDE

∂x

∂t
= P1

∂

∂z
(L(z)x)(t, z)) + (P0 −G0)L(z)x(t, z), (1)

z ∈ (a, b), where P1 ∈ Mn(R) is a non-singular symmetric matrix,
P0 = −P>0 ∈Mn(R), G0 ≥ 0 ∈Mn(R) and x takes values in Rn.
Furthermore, L(·) ∈ Mn(L2(a, b)) is a continuously differentiable
matrix-valued function satisfying for all z ∈ (a, b), L(z) = L(z)>

and L(z) > mI , with m > 0 independent from z.
For simplicity L(z)x(t, z) will be denoted by (Lx)(t, z) and we

shall use the notation J =
(
P1

∂
∂z

+ P0

)
(.) for the skew symmetric

part of the differential operator. The state space is defined as X =
L2(a, b;Rn) with inner product 〈x1, x2〉L = 〈x1,Lx2〉 and norm
‖x1‖2L = 〈x1, x1〉L. Hence X is a Hilbert space. Note that the natural
norm on X and the L2 norm are equivalent. The reason for selecting
this space is that ‖ · ‖2 is usually related to the energy function of
the system.

Definition II.1. [5], [7] Let Lx ∈ H1(a, b;Rn). Then the
boundary port variables associated with system (1) are the vectors
e∂,Lx, f∂,Lx ∈ Rn, defined by[

f∂,Lx
e∂,Lx

]
=

1√
2

[
P1 −P1

I I

] [
(Lx)(b)
(Lx)(a)

]
= R

[
(Lx)(b)
(Lx)(a)

]
. (2)

Note that the port variables are linear combinations of the boundary
variables. Let us define the matrix Σ ∈M2n(R) as follows

Σ =

[
0 I
I 0

]
. (3)

Theorem II.1. [5], [7] Let W be a n × 2n real matrix. If W has
full rank and satisfies WΣW> ≥ 0, where Σ is defined in (3), then
(1), with input

u(t) = W

[
f∂,Lx(t)
e∂,Lx(t)

]
is a boundary control system on X in the sense of [2, page 122].
Furthermore, the operator Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx
with domain

D(A) =

{
Lx ∈ H1(a, b;Rn)

∣∣∣ [f∂,Lx
e∂,Lx

]
∈ kerW

}
generates a contraction semigroup on X . Let W̃ be a full rank matrix
of size n× 2n with

[
W
W̃

]
invertible and let PW,W̃ be given by

PW,W̃ =

([
W

W̃

]
Σ

[
W

W̃

]>)−1

=

[
WΣW> WΣW̃>

W̃ΣW> W̃ΣW̃>

]−1

.
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Define the output of the system as the linear mapping C :
L−1H1(a, b;Rn)→ Rn,

y(t) = Cx(t) := W̃

[
f∂,Lx(t)
e∂,Lx(t)

]
.

Then for u ∈ C2(0,∞;Rk), Lx(0) ∈ H1(a, b;Rn), and u(0) =

W
[
f∂,Lx(0)
e∂,Lx(0)

]
the following balance equation is satisfied:

1

2

d

dt
‖x(t)‖2L =

1

2

[
u(t)
y(t)

]>
PW,W̃

[
u(t)
y(t)

]
− 〈G0Lx(t),Lx(t)〉

≤ 1

2

[
u(t)
y(t)

]>
PW,W̃

[
u(t)
y(t)

]
.

(4)

The matrix PW,W̃ is defined if and only if
[
W
W̃

]
is invertible.

Notice that in the absence of some internal dissipation (G0 = 0)
the system only exchanges energy with the environment through the
boundaries since the input and output act on the boundary of the
spatial domain. Finally, we remark that the balance equation (4)
represents the energy balance equation relating the internal energy
variation to the power flow at the boundary and may be rewritten as

1

2

d

dt
‖x(t)‖2L ≤

1

2

[
(Lx)(t, b)
(Lx)(t, a)

]> [
P1 0
0 −P1

] [
(Lx)(t, b)
(Lx)(t, a)

]
(5)

with
[
P1 0
0 −P1

]
= R>ΣR.

Remark II.1. As it has been pointed out in [8, page 36-41], if the
matrices W and W̃ are selected such that PW,W̃ = [ 0 II 0 ] = Σ, then
the BCS fulfils 1

2
d
dt
‖x(t)‖2L ≤ u>(t)y(t), and is called an impedance

energy preserving BCS.

We follow [6], [8] to define a class of BCS on some extended state
space X̃ = X×V , where V is the state space of a finite dimensional
control system interconnected with the BCS of Theorem II.1 through
its boundaries. Consider a linear system with minimal realization

v̇ = Acv +Bcuc, yc = Ccv +Dcuc, (6)

with state v ∈ V = Rm, input values uc ∈ Uc = Rn and output
values yc ∈ Yc = Rn. Moreover, Ac, Bc, Cc and Dc are constant real
matrices of dimension m×m, m×n, n×m and n×n respectively.

Assumption 1. The linear control system is strictly positive real
(SPR) [11], [12], i.e. σmin(Bc) > 0 and there exist matrices Pc > 0,
Pc, L ∈ Rm×m, µmin(L) , ε > 0, Mc ∈ Rn×m, Nc ∈ Rm×m that
satisfy the Lur’e equations:

A>c Pc + PcAc = −M>c Mc − Lc, B>c Pc − Cc = N>c Mc,

N>c Nc = Dc +D>c
(7)

The existence of a solution to (7) implies that (6) fulfils the so
called dissipation inequality [12], [13] Ec(v(t)) ≤ Ec(v(0)) +∫ t
0
w(u(s), y(s))ds, where Ec(v) ≥ 0 is called the storage function

(for physical systems it usually corresponds to the energy), and
w(u, y) is called the supply rate. If the supply rate is of the form
w(u, y) = u>y − u>Su, with S = σI , σ > 0, then the dissipative
system is called input-strictly passive. In [6], [8] it is shown that a
power conserving interconnection [14] (Fig. 1), i.e.,

u = r − yc, y = uc, (8)

with r ∈ Rn the new input of the system, of an impedance energy
preserving BCS and a linear SPR finite dimensional system defines
again a BCS on the extended space X̃ .

Theorem II.2. [6], [8] Let the state of the open-loop BCS satisfy
1
2
d
dt
‖x(t)‖2L ≤ u>(t)y(t). Consider a LTI SPR finite dimensional

system with storage function Ec(t) = 1
2
〈v(t), Qcv(t)〉Rm , Qc =

!

!"

#"$"

%&"

'" %"

'&"

ABOUT TWEEZERS

Y. LE GORREC

DNA is first approximated by a spring+damper system. The tweezer is approx-
imated by a linear second order system. The parametric identification of the open
tweezers (without trapped DNA) leads to:

• Mass: M = 360 . 10−9Kg
• Stiffness: k = 24.9 n/m
• Friction coefficient: ν = 10−4 N.s/m

The resonance frequency and the damping factor of the open tweezers are given by:

fR =
1

2π

�
k

M
− ν2

4M2
, Q =

√
kM

ν

After DNA bundle trapping

fR−DNA =
1

2π

�
k + kDNA

M
− (ν + νDNA)2

4M2
, QDNA =

�
(k + kDNA)M

(ν + νDNA)

From experiments we have:

fR = 2477, 75Hz , Q = 59.75 , fR−DNA = 2479, 5Hz , QDNA = 56, 80

Then

4π2f2
R−DNA =

k + kDNA

M
− (k + kDNA)

4MQ2
DNA

Then

kDNA = 4Mπ2f2
R−DNA

�
1 − 1

4Q2
DNA

�−1

− k

and

νDNA =

�
(k + kDNA)M

QDNA
− ν

ẋ = JLx

u = W

�
f∂
e∂

�
, y = �W

�
f∂
e∂

�

�
v̇ = Acv + Bcuc

yc = Ccv + Dcuc

1

ABOUT TWEEZERS 2





ẋ = J Lx�
u
y

�
=

�
W

W̃

� �
f∂,Lx(t)
e∂,Lx(t)

�

Fig. 1. Power preserving interconnection

Q>c > 0 ∈ Mm(R). Then the feedback interconnection of the BCS
and the finite dimensional system is again a BCS on the extended
state space x̃ ∈ X̃ = X × V with inner product 〈x̃1, x̃2〉X̃ =
〈x1, x2〉L + 〈v1, Qcv2〉V . Furthermore, the operator Ae defined by

Aex̃ =

[
JL 0
BcC Ac

] [
x
v

]
with

D(Ae) =

{[
x
v

]
∈
[
X
V

] ∣∣∣Lx ∈ HN (a, b;Rn),

f∂,Lxe∂,Lx
v

 ∈ ker W̃D

}
,

where W̃D =
[
(W +DcW̃ Cc)

]
generates a contraction semi-

group on X̃ .

III. DYNAMIC BOUNDARY CONTROL

The main result of this paper is the use of strictly-input passive
finite dimensional boundary controllers to exponentially stabilize a
large set of BCS. This is a powerful result due to two reasons: 1)
Exponential stability is a very strong condition that in general is
difficult to prove, but that provides a measure of performance associ-
ated with the time decay constant. 2) Many physical applications are
modelled as infinite dimensional systems coupled at the boundaries
with finite dimensional systems, i.e., set of coupled PDE’s and ODE’s.
In those cases the finite dimensional part (ODE) corresponds to
the ”controller” and the stability of the coupled system may be
analysed using our approach. We will focus our study in a particular
class of linear boundary controllers, namely port-Hamiltonian control
systems, since a large class of physical applications are naturally
modelled using the port-Hamiltonian formalism [14].

Proposition III.1. A finite dimensional control system

v̇ = (Jc −Rc)Qcv +Bcuc, yc = B>c Qcv + Scuc, (9)

is exponentially stable and satisfies Assumption 1, i.e., is SPR, if
there exist constant matrices of proper dimension Qc = Q>c > 0,
Jc = −J>c , Rc = R>c ≥ 0, Sc = S>c > 0, Bc full rank and
Ac := (Jc −Rc)Qc Hurwitz1. Consequently, system (9) is a strictly
input passive port-Hamiltonian system, i.e., there exists σ > 0 such
that Ėc(t) ≤ uc(t)>yc(t)− σ‖uc(t)‖2.

We shall frequently use the following inequalities for v, w ∈ Rn
and α > 0

−α2‖v‖2 − 1

α2
‖w‖2 ≤ v>w + w>v (10)

≤ α2‖v‖2 +
1

α2
‖w‖2. (11)

This holds since ‖αv ± 1
α
w‖2 ≥ 0. The following Lemmas follow

from Proposition III.1.

1This is equivalent to the pair (Jc, Rc) being controllable
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Lemma III.2. There exist strictly positive constants κ2, κ4 and κ5

such that for all τ > 0 the energy of (9) satisfies:

Ec(τ) ≤ κ1(τ)Ec(0) + κ5

∫ τ

0

‖uc(t)‖2dt (12)

where κ1(τ) = κ4e
−κ2τ .

Proof: Since Ac = (Jc − Rc)Qc is exponentially stable there
exists κ2 > 0 such that Ac+2κ2I is still exponentially stable. Hence
there exists a P1 = P>1 > 0 satisfying

(Ac + 2κ2I)>P1 + P1(A+ 2κ2I) ≤ 0 (13)

which implies that A>c P1 + P1Ac ≤ −4κ2P1. Taking the time
derivative of v>P1v along trajectories we have

d

dt
(v>P1v) = (Acv +Bcuc)

>P1v + v>P1(Acv +Bcuc)

≤ −4κ2v
>P1v + u>c B

>
c P1v + v>P1Bcuc

≤ −2κ2v
>P1v + κ3‖uc‖2

(14)

for some κ3 > 0, where we used (11) with α2 = 2κ2. This implies
that

d

dt

(
eκ2tv>(t)P1v(t)

)
≤ κ3e

κ2t‖uc(t)‖2. (15)

Integrating this relation over t ∈ [0, τ ] and rearranging
terms, we obtain v(τ)>P1v(τ) ≤ e−κ2τv(0)>P1v(0) +∫ τ
0
κ3e

κ2(t−τ)‖uc(t)‖2dt. Using Lemma A.6.6 from [2, page 638]
we have that

∫ τ
0
κ3e

κ2(t−τ)‖uc(t)‖2dt ≤ κ5

∫ τ
0
‖uc(t)‖2dt for

some κ5 > 0, and since there exists positive constants q1, q2 such
that for all v ∈ Rn q1v

>P1v ≤ 1
2
v>Qcv ≤ q2v

>P1v, inequality
(12) follows.

Lemma III.3. There exists positive constants ξ1, ξ2 and τ0 such for
all τ > τ0 the energy of (9) satisfies∫ τ

0

Ec(t)dt ≤ ξ1
∫ τ

0

v>(t)QcRcQcv(t)dt+ ξ2

∫ τ

0

‖uc(t)‖2dt

Proof: Since Ac = (Jc − Rc)Qc is exponentially stable there
exists a P2 = P>2 ≥ 0 such that A>c P2 + P2Ac = − 1

2
Qc. Taking

the time derivative of v>P2v we have
d

dt

(
v>P2v

)
= (Acv +Bcuc)

>P2v + v>P2(Acv +Bcuc)

= −1

2
v>Qcv + u>c B

>
c P2v + v>P2Bcuc.

(16)

Now, using equation (11) we find

d

dt

(
v>P2v

)
≤ (α2 − 1)

1

2
v>Qcv +

β3
α2
u>c uc, (17)

for some β3 > 0 and α ∈ ] 0, 1 [ . Now, integrating (17) we obtain(
v>P2v

)
(τ)−

(
v>P2v

)
(0) ≤

(α2 − 1)

∫ τ

0

Ec(t)dt+
β3
α2

∫ τ

0

‖uc(t)‖2dt. (18)

Since P2 and Qc are symmetric and positive we may bound them by
P2 ≤ 1

2
β5Qc, with β5 > 0 sufficiently large, to obtain∫ τ

0

Ec(t)dt ≤ β1Ec(0) + β2

∫ τ

0

‖uc(t)‖2dt. (19)

with β1 = β5
(1−α2)

> 0 and β2 = 1
(1−α2)

β3
α2 > 0. On the other hand

we have that the time derivative of the energy of (9) is given by

1

2

d

dt
(v>Qcv) =

− v>QcRcQcv +
1

2

(
u>c B

>
c Qcv + v>QcBcuc

)
. (20)

Using (10) in (20) we obtain we obtain for any η > 0

1

2

d

dt
(v>Qcv) ≥

− v>QcRcQcv −
1

2

(
η2‖Q

1
2
c Bcuc‖2 +

1

η2
‖Q

1
2
c v‖2

)
.

Integrating and grouping terms

Ec(0) ≤ Ec(τ)+∫ τ

0

v(t)>QcRcQcv(t) +
η2

2
‖Q

1
2
c Bcuc(t)‖2 +

1

2η2
Ec(t)dt.

Now, applying Lemma III.2 and using (19) we obtain

Ec(0) ≤ κ1(τ)Ec(0) + κ3

∫ τ

0

‖uc(t)‖2dt

+

∫ τ

0

v>QcRcQcv +
η2

2
‖Q

1
2
c Bc‖2‖uc(t)‖2dt

+
1

2η2

(
β1Ec(0) + β2

∫ τ

0

‖uc(t)‖2dt
)
.

Choosing τ0 and η sufficiently large, such that κ1(τ0) + β1
2η2

< 1,
see Lemma III.2, we obtain for τ > τ0

Ec(0) ≤ γ1
∫ τ

0

v(t)>QcRcQcv(t)dt+ γ2

∫ τ

0

‖uc(t)‖2dt, (21)

with constants γ1 = 1/
(

1−
(
κ1(τ0) + β1

2η2

))
and γ2 =(

κ3 + η2

2
‖Q

1
2
c Bc‖2 + β2

2η2

)
γ1. Now, combining (19) and (21) we

obtain∫ τ

0

Ec(t)dt ≤ ξ1
∫ τ

0

v>QcRcQcvdt+ ξ2

∫ τ

0

‖uc(t)‖2dt (22)

with ξ1 = β1γ1 and ξ2 = β1γ2 + β2, which proves the Lemma.

Lemma III.4. For every δ1 > 0 there exists a δ2 > 0 such that for
all τ > 0 the energy of (9) satisfies the relation∫ τ

0

δ1Ec(t) + ‖yc(t)‖2dt ≤ δ2
∫ τ

0

Ec(t) + ‖uc(t)‖2dt. (23)

Proof: The relation follows by noting that the left term of (23)
may be written and bounded as∫ τ

0

[
v
uc

]> [
( δ1

2
Qc +QcBcB

>
c Qc) QcBcSc

ScB
>
c Qc S2

c

] [
v
uc

]
dt

≤ δ2
∫ τ

0

[
v
uc

]> [ 1
2
Qc 0
0 I

] [
v
uc

]
dt

for some δ2 > 0.

IV. EXPONENTIAL STABILITY

To show that the BCS defined in Theorem II.2 is exponentially
stable, we first show that the total energy of the coupled PDE-ODE
system is bounded by the energy flowing through the boundaries
of the infinite dimensional part and the stored energy in the finite
dimensional part. Then using this bound it is shown that the total
energy decays exponentially. In the rest of the paper, we will set G0 =
0 for simplicity. Notice, however, that all results are valid for G0 6= 0.
Moreover, as in the case of finite dimensional systems, the presence
of natural dissipation adds in general robustness to the control. As
part of the boundary port variables of the infinite dimensional system
can be set to zero (and hence not used for the interconnection) we
will assume that the infinite dimensional system satisfies a dissipative
relation.
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Assumption 2. The BCS of Theorem II.1 satisfies ‖u(t)‖2 +
‖y(t)‖2 ≥ ε‖Lx(t, b)‖2 (or ≥ ε‖Lx(t, a)‖2) for some ε > 0.

The physical interpretation of Assumption 2 is that the energy
flowing through any of the boundaries is bounded by the energy
flowing in/out through the inputs/outputs. This is, roughly speaking,
related to the passivity of (1) and to the definition of inputs and
outputs given in Theorem II.1. The following Lemma gives a bound
on the total energy of the interconnected system.

Lemma IV.1. Consider a BCS as described in Theorem II.2 with
r(t) = 0, for all t ≥ 0. Then, the energy of the system Ẽ(t) =
1
2
‖x(t)‖2L + 1

2
v(t)TQcv(t) satisfies for τ large enough

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, b)‖2dt+ 2c(τ)
c1

∫ τ

0

Ec(t)dt,

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, a)‖2dt+ 2c(τ)
c1

∫ τ

0

Ec(t)dt,

(24)

where c is a positive constant that only depends on τ and c1 is a
positive constant.

Proof: In [7], it has been proved that there exist positive γ
and τ1 such that for τ > τ1 > 2γ(b − a), the function F (z) =∫ τ−γ(b−z)
γ(b−z) x>(t, z)L(z)x(t, z)dt fulfils F (b) ≥ F (z)e−κ(b−a) for
z ∈ [a, b] where κ is a positive constant. On other hand, due to the
contraction property of the semigroup Ẽ(t2) ≤ Ẽ(t1) for t2 ≥ t1 it
is deduced that∫ τ−γ(b−a)

γ(b−a)
Ẽ(t)dt ≥ Ẽ(τ − γ(b− a))

∫ τ−γ(b−a)

γ(b−a)
dt

≥ (τ − 2γ(b− a))Ẽ(τ − γ(b− a)).

Hence we obtain

2(τ − 2γ(b− a))Ẽ(τ)

≤ 2(τ − 2γ(b− a))Ẽ(τ − γ(b− a))

≤
∫ b

a

(∫ τ−γ(b−z)

γ(b−z)
x>(Lx)dt

)
dz + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤
∫ b

a

F (z)dz + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤ (b− a)F (b)eκ(b−a) + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤ c1
∫ τ

0

‖(Lx)(b)‖2dt+ 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

where c1 = (b − a)‖L−1(b)‖eκ(b−a), and where Fubini’s theorem
and the fact that the integration interval increases when substituting a
by z in the integral of the energy have been used in the second step.
Hence we obtain that for τ > τ1, Ẽ(τ) ≤ c(τ)

∫ τ
0
‖(Lx)(t, b)‖2dt+

2c(τ)
c1

∫ τ−γ(b−a)
γ(b−a) Ec(t)dt, with c(τ) = c1

2(τ−2γ(b−a)) . The second

inequality is obtained similarly with F (z) =
∫ τ−γ(a−z)
γ(a−z) x>Lxdt.

Theorem IV.2. Consider the BCS defined by Theorem II.2 with
r(t) = 0, for all t ≥ 0. The finite dimensional boundary controller
of Proposition III.1 exponentially stabilizes the BCS.

Proof: Let σ > 0 be such that Sc ≥ σI . The time derivative of
the total energy satisfies

˙̃E = −v>QcRcQcv − u>c Scuc
≤ −v>QcRcQcv − σu>c uc, since Sc ≥ σI
= −v>QcRcQcv − σε1u>c uc − σε2u>c uc
= −v>QcRcQcv − σε1‖uc‖2 − σε2‖y‖2

= −v>QcRcQcv − σε1‖uc‖2 − σε2
(
‖y‖2 + ‖u‖2

)
+ σε2‖u‖2

with ε1 + ε2 = 1 and where we have used that uc = −y. Using
Assumption 2 we have

˙̃E ≤ −v>QcRcQcv − σε1‖uc‖2 − σε2ε‖Lx(t, b)‖2 + σε2‖yc‖2.

Integrating this equation on t ∈ [0, τ ] we have

Ẽ(τ)− Ẽ(0) ≤ −
∫ τ

0

v>(t)QcRcQcv(t)dt

+

∫ τ

0

− σε1‖uc(t)‖2 − σε2ε‖Lx(t, b)‖2 + σε2‖yc(t)‖2dt.

Next choose τ sufficiently large such that Lemmas III.3 and IV.1
hold. Using the latter lemma we have

Ẽ(τ)− Ẽ(0) ≤ −
∫ τ

0

v>QcRcQcv + σε1‖uc‖2dt

+
σε2ε

c(τ)

(
2c(τ)

c1

∫ τ

0

Ec(t)dt− Ẽ(τ)

)
+ σε2

∫ τ

0

‖yc‖2dt.

Grouping terms we have that

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤

−
∫ τ

0

v(t)>QcRcQcv(t)dt− σε1
∫ τ

0

‖uc(t)‖2dt

+σε2

(∫ τ

0

2ε

c1
Ec(t) + ‖yc(t)‖2dt

)
.

Using Lemma III.4 with δ1 = 2ε
c1

we have

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤ −

∫ τ

0

v(t)>QcRcQcv(t)dt

+ σε2δ2

∫ τ

0

Ec(t)dt+ σ(ε2δ2 − ε1)

∫ τ

0

‖uc(t)‖2dt. (25)

Now, using Lemma III.3 we obtain

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤

(σε2δ2ξ1 − 1)

∫ τ

0

v(t)>QcRcQcv(t)dt

+ σ(ε2δ2(1 + ξ2)− ε1)

∫ τ

0

‖uc(t)‖2dt.

Since ε2 may be chosen to be arbitrarily small, i.e, ε2 � 1 and since
ε1 = 1−ε2, we have that Ẽ(τ) ≤ c2Ẽ(0) with c2 = 1(

1+
σε2ε
c(τ)

) < 1.

From this we see that the semigroup T (t) generated by Ae satisfies
‖T (τ)‖ ≤ 1 for a sufficiently large τ . Consequently, log(‖T (τ)‖) ≤
0, and by using the properties of strongly continuous semigroups
[2, Theorem 2.16, page 18] there exist M̃ and α > 0 such that
‖T (t)‖ ≤ M̃e−αt for all t > 0.

V. EXAMPLE: DNA-MANIPULATION PROCESS

In this section we illustrate the exponential stability result on a
physically based example: a controlled nanotweezer used for DNA
manipulation [15]. The considered class of tweezer is presented in
Figure 2, and the control objective is to control the translational
position of the DNA-bundle (xc2). From physical considerations
the lumped model of the DNA bundle is split into two parts: a
longitudinal model and a rotation model. The longitudinal model
accounts for mean viscous frictions of the wet molecules and for
the longitudinal motion (with inertia) of the bundle. It is composed
of a damper interconnected to a moving load attached to a spring-
damper system. The rotation model accounts for the bending of the
DNA sample and is considered with the same structure. The arm is
modelled as a Timoshenko beam and is actuated applying a force
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Fig. 3. Closed-loop system

and a torque at point a by using a port-Hamiltonian controller. We
assume that it is only possible to measure the transversal and angular
velocities at the point a. The total system, may be divided into
three subsystems: the flexible arm, the DNA-bundle at the tip of the
gripper and the port-Hamiltonian controller. The flexible arm model
is infinite dimensional while the DNA-bundle and port-Hamiltonian
controller are finite dimensional. The subsystems are interconnected
through their boundary port variables. The interconnection boundary
port variables and the causality (depicted with arrows) are given in
Figure 3. It is important to remark that only a part of the finite
dimensional system is free to design, namely the port-Hamiltonian
controller. The DNA-bundle model is given by the physical process.
Hence, in this application the control system is given in part by the
physically imposed dynamic boundary conditions.

A. The Timoshenko beam

The Timoshenko beam has been widely studied as port-
Hamiltonian system [16] and as BCS [5]. The exponential stability
of the system has been proved for static boundary feedback in [7],

[8]. The port Hamiltonian model of the beam is given by

∂

∂t

x1x2x3
x4

 =

(
0 1 0 0

1 0 0 0
0 0 0 1

0 0 1 0


︸ ︷︷ ︸

P1

∂

∂z
+


0 0 0 −1
0 0 0 0
0 0 0 0

1 0 0 0


︸ ︷︷ ︸

P0

)
Kx1
1
ρ
x2

EIx3
1
Iρ
x4


(26)

with the following state (energy) variables: x1 = ∂w
∂z

(z, t)− φ(z, t)
the shear displacement, x2 = ρ(z) ∂w

∂t
(z, t) the transverse mo-

mentum distribution, x3 = ∂φ
∂z

(z, t) the angular displacement, and
x4 = Iρ

∂φ
∂t

(z, t) the angular momentum distribution, for z ∈ (a, b),
t ≥ 0, where w(t, z) is the transverse displacement of the beam
and φ(t, z) is the rotation angle of a filament of the beam. The
coefficients ρ(z), Iρ(z), E(z), I(z) and K(z) are the mass per
unit length, the rotary moment of inertia of a cross section, Young’s
modulus of elasticity, the moment of inertia of a cross section,
and the shear modulus respectively. The matrices P1 and P0 define
the skew-symmetric differential operator of order 1 acting on the
state space X = L2(a, b,R4), J = P1

∂
∂z

+ P0. The energy
of the beam is expressed in terms of the energy variables, E =
1
2

∫ b
a

(
Kx21 + 1

ρ
x22 + EIx23 + 1

Iρ
x24

)
dz = 1

2
‖x‖2L. The boundary

port variables are given accordingly to Definition II.1, (see also [5],
[8]),

[
f∂,Lx
e∂,Lx

]
=



(ρ−1x2)(b)− (ρ−1x2)(a)

(Kx1)(b)− (Kx1)(a)

(I−1
ρ x4)(b)− (I−1

ρ x4)(a)

(EIx3)(b)− (EIx3)(a)
(Kx1)(b) + (Kx1)(a)

(ρ−1x2)(b) + (ρ−1x2)(a)

(EIx3)(b) + (EIx3)(a)

(I−1
ρ x4)(b) + (I−1

ρ x4)(a)


.

The physical control ports are given by the force/torque acting
at the base of the beam (input), and the translational/angular
velocities at the base of the beam (output). All physical input
and output ports are hence located on the point a of the beam
a. The input and output variables of the flexible arm must co-
incide with the physical ones, hence we define the following
input and outputs u =

[
v(b) ω(b) F (a) T (a)

]T , y =[
F (b) T (b) −v(a) −ω(a)

]T , which is achieved by defining

u = W
[
f∂,Lx
e∂,Lx

]
and y = W̃

[
f∂,Lx
e∂,Lx

]
where,

W =


1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1
0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0

 ,

W̃ =


0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
1 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 −1

 .
It can by shown that with this choice of input and output the
system (26) defines a an abstract boundary control system. Fur-
thermore Ax = P1(∂/∂z)(Lx) + P0Lx with domain D(A) ={
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lxe∂,Lx

]
∈ kerW

}
generates a contraction

semigroup on X and the energy balance equation is defined as:
dE
dt

= uT y.

Remark V.1. In this case the Timoshenko beam is fully actuated and
the input/output set is defined by: [ uy ] = 1√

2

[
W
W̃

] [
P1 −P1
I I

] [ Lx(b)
Lx(a)

]
where [WT W̃T ]T and P1 are full rank. Hence there exists an ε
such that ‖u‖2 + ‖y‖2 ≥ ε‖Lx(b)‖2, and the BCS defined by the
Timoshenko beam satisfies Assumption 2.
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B. The DNA-bundle

The DNA-bundle is represented by a simple damper + load
+ spring-damper system. In Figure 2, k2, f1, f2, kθ,1,kθ,2, fθ,1,
fθ,2 represent the positive constants of the springs and the viscous
dampers respectively, M and J are the mass and the inertia of the
load and xc1, xc2, θc1, θc2 the relative positions and position angle
respectively. Let us denote with sub-index b the system representing
the DNA-bundle. Then by defining vb = (xc2,Mẋc2, θc2, Jθ̇c2)T ,
ub =

[
F (b) T (b)

]T and yb =
[
v(b) ω(b)

]T we obtain the
following finite dimensional representation of the DNA-bundle

v̇b = (Jb −Rb)
dEb
dvb

+ gbub, yb = gTb
dEb
dvb

+ Sbub

with Eb the energy of the system (sum of the kinetic and potential
energies): Eb(xc2,Mẋc2, θc2, Jθ̇c2) = k2

2
x2c2 + 1

2M
(Mẋc2)2 +

kθ,2
2
θ2c2 + 1

2J
(Jθ̇c2)2 and Jb =

[
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

]
, Rb =

[ 0 0 0 0
0 f2 0 0
0 0 0 0
0 0 0 fθ,2

]
,

gTb = [ 0 1 0 0
0 0 0 1 ], Sb =

[
1
f1

0

0 1
fθ,1

]
. Note that this system satisfies

Proposition III.1.

C. The controller

The controller, which we denote with the sub-index ”a”, is located
at the base of the flexible arm, and is free to design. Hence the
controller should be selected such that the conditions in Theorem
IV.2 are satisfied. To this end we chose the control system as

v̇a = (Ja −Ra)
dEa
dva

+ gaua, ya = g>a
dEa
dva

+ Saua,

where va = [qa1 , qa2 , pa1 , pa2 ]>, qa1 , qa2 are the generalized
coordinates, Ja, Ra, Sa ∈ M4(R), Ja =

[
0 I
−I 0

]
, Ra =

[
Ra1 0
0 Ra2

]
,

Sa =
[
Sa1 0
0 Sa2

]
, ga = [ 0I ] with Rai =

[
rai1 0

0 rai2

]
∈ M2(R),

rai1 , rai2 > 0 ∈ R , Sai =
[
Sai1 0

0 sai2

]
∈ M2(R), sai1 , sai2 >

0 ∈ R, i = 1, 2. The Hamiltonian of the system is given by

the virtual energy: Ea = 1
2

(
ka1q

2
a1 + ka2q

2
a2

)
+ 1

2

(
p2a1
ma

+
p2a2
mIa

)
where ka1 , ka2 , ma, mIa are (positive) tuning parameters. The
inputs ua = [ua1 , ua2 ]> ∈ R2 may be identified with the boundary
variables of the beam at the point a, ua = [−v(a),−ω(a)]>.
The outputs correspond to the input force and torque of the beam
at point a, ya = [F (a), T (a)]>. With this parametrization the
finite dimensional port-Hamiltonian controller corresponds to an input
strictly passive, exponentially stable system.

D. Exponential stability

The complete finite dimensional port-Hamiltonian control system
is obtained by combining the port-Hamiltonian models of the DNA-
bundle and the controller,

v̇ =

[
Jb −Rb 0

0 Ja −Ra

]
dEc
dv

+

[
gb
ga

]
uc

yc =
[
g>b g>a

] dEc
dv

+

[
Sa 0

0 Sb

]
uc

with state v = [va, vb]
>, Hamiltonian (storage) function Ec = Ea +

Eb, input uc = [ua, ub]
>, supply rate w = u>c yc − u>Scu. The

finite dimensional port-Hamiltonian system is strictly-input passive
and exponentially stable, hence it satisfies Proposition III.1 and by
Theorem IV.2 the microgripper i.e., the interconnection of the flexible
arm, DNA-bundle and controller is exponentially stable.

VI. CONCLUSION

The exponential stability of a class of BCS with dynamic boundary
control has been addressed. The class of BCS encompasses infinite
dimensional port-Hamiltonian systems and thereby a large number
of physical systems. It has been shown that if the dynamic boundary
controller is linear and input-strictly passive, then a power preserving
interconnection renders the closed-loop system exponentially stable.
The exponential stability follows from two key results: The power
preserving interconnection between the class of BCS of Theorem II.1
and a strictly-input passive linear finite dimensional system defines
again a BCS on an extended space; and, the dissipation of the
controller assures the exponential decay of the total energy. The
result is particularly interesting for stabilization of boundary control
systems and for the analysis of complex systems whose models are
given by coupled PDE’s and ODE’s. The result has been illustrated
on a physically motivated example: a DNA manipulation process
modelled by a PDE interconnected at the boundaries with a set
of ODE’s. Future work will aim to extend the results to energy
shaping boundary controllers using Casimir’s or/and IDA-PBC [14]
techniques.
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