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Abstract: In this paper, we consider the asymptotic stabilization of a class of one dimensional
boundary controlled port Hamiltonian systems by an immersion/reduction approach and the
use of Casimir invariants. We first extend existing results on asymptotic stability of linear
infinite dimensional systems controlled at their boundary to the case of stable Port Hamiltonian
controllers including some physical constraints as clamping. Then the relation between structural
invariants, namely Casimir functions, and the controller structure is computed. The Casimirs
are employed in the selection of the controllers Hamiltonian to shape the total energy function
of the closed loop system and introduce a minimum in the desired equilibrium configuration.
The approach is illustrated on the model of a micro manipulation process with full-actuation
on one side of the spatial domain.

Keywords: Infinite dimensional port Hamiltonian systems, asymptotic stability, immersion
reduction control design.

1. INTRODUCTION

Boundary controlled distributed parameter systems have
been extensively studied in the literature even in the
linear case. The derivation of the control law usually goes
through an appropriate choice of a Lyapunov function
including the boundary variables that are used for control
purpose. Lyapunov functions being intrinsically linked to
the energy it is quite natural to use a formalism that
emphasis the links existing between the energy and the
dynamics of the system. In finite dimension this is done
by the use of the port Hamiltonian framework and the
control by energy shaping (Ortega et al., 2001; van der
Schaft, 2004) or IDA-PBC (Ortega et al., 2002). The Port
Hamiltonian framework has been extended to the case of
infinite dimensional system using a geometric differential
point of view in (van der Schaft and Maschke, 2002)
and using a functional analysis point of view in the one
dimensional case in (Le Gorrec et al., 2005). Such approach
allows to link the variation of the energy within the
system to the power flow at its boundary. In (Villegas
et al., 2005) and (Villegas et al., 2009) this approach
has been used to derive some simple matrix conditions to
? This work was supported by French ANR sponsored project
HAMECMOPSYS under Reference Code ANR-11-BS03-0002 and
the LABEX ANR-11-LABX-01-01

insure the exponential or asymptotic stability for a class of
linear 1D boundary controlled systems. Port Hamiltonian
formulation has also been used to design stabilizing control
laws by energy shaping (Macchelli and Melchiorri, 2004).
The idea is to extend the dynamic system state space by
the way of the interconexion of a dynamic controller and
then to reduce it through the structural invariants, named
Casimir invariants, in order to shape the closed loop energy
function (that is used as Lyapunov function).

In this paper we consider a class of linear boundary port
Hamiltonian systems defined on the one dimensional space
interconnected in an energy preserving way to a finite
dimensional port Hamiltonian controller and including
some physical constraints by the rank deficiency of in-
put/output matrices of the controller. We first prove that
the closed loop system is asymptotically stable as soon
as the controller is exponentially stable. We then propose
some sufficient conditions to derive the closed loop Casimir
functions that will be used to link the controller states to
the system states. The approach is then applied to the
control of a micromanipulation process that is used for
the characterization of biological samples. In this case the
considered finite dimensional system is composed of the
suspension system+biological sample (that are fixed) and
of the controller (that we have to design).
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2. BOUNDARY CONTROLLED
PORT-HAMILTONIAN SYSTEMS

The class of boundary controlled systems we study is
described by the following PDE:

∂x

∂t
= P1

∂

∂z
(L(z)x(t, z)) + (P0 −G0)L(z)x(t, z), (1)

where z ∈ (a, b), P1 ∈ Mn(R) (Mn(R) denotes the space
of real n×n matrices) is a non-singular symmetric matrix,
P0 = −P>0 ∈ Mn(R), G0 ≥ 0 ∈ Mn(R) and x takes
values in Rn. Furthermore, L(·) ∈ L2(a, b;Mn(R)) is
a bounded and continuously differentiable matrix-valued
function satisfying for all z ∈ (a, b), L(z) = L(z)> and
L(z) > mI, with m independent from z. For simplicity
L(z)x(t, z) will be denoted by (Lx)(t, z). The state space is
defined as X = L2(a, b; Rn) with inner product 〈x1, x2〉L =
〈x1,Lx2〉 and norm ‖x‖2L = 〈x, x〉L. Hence X is a Hilbert
space. Note that the natural norm on X and the L2 norm
are equivalent. The reason for selecting this space is that
‖·‖2L is usually related to the energy function of the system.
Definition 1. (Le Gorrec et al., 2005) Let Lx ∈ H1(a, b; Rn).
The boundary port variables associated with system (1)
are the vectors e∂,Lx, f∂,Lx ∈ Rn, defined by[
f∂,Lx
e∂,Lx

]
=

1√
2

[
P1 −P1

I I

] [
(Lx)(b)
(Lx)(a)

]
= R

[
(Lx)(b)
(Lx)(a)

]
. (2)

Note that the port variables are linear combinations of the
boundary variables.
Theorem 2. (Le Gorrec et al., 2005) Let W be a n × 2n
real matrix. If W has full rank and satisfies WΣW> ≥ 0,

where Σ =
[

0 I
I 0

]
, then the system (1), with input

u(t) = Bx = W

[
f∂,Lx(t)
e∂,Lx(t)

]
(3)

is a boundary control system on X. Furthermore, the
operator Ax = P1(∂/∂z)(Lx) + (P0−G0)Lx with domain

D(A) =
{
Lx ∈ H1(a, b; Rn)

∣∣∣
[
f∂,Lx
e∂,Lx

]
∈ kerW

}

generates a contraction semigroup on X. Let W̃ be a full
rank matrix of size n × 2n with

[
W
W̃

]
invertible and let

PW,W̃ be given by

PW,W̃ =

([
W

W̃

]
Σ
[
W

W̃

]>)−1

=
[
WΣW> WΣW̃>

W̃ΣW> W̃ΣW̃>

]−1

.

Define the output of the system as the linear mapping
C : L−1H1(a, b; Rn)→ Rn,

y = Cx(t) := W̃

[
f∂,Lx(t)
e∂,Lx(t)

]
(4)

Then for u ∈ C2(0,∞; Rk), Lx(0) ∈ H1(a, b; Rn), and
u(0) = W

[
f∂,Lx(0)

e∂,Lx(0)

]
the following balance equation is

satisfied:
1

2

d

dt
‖x(t)‖2L =

1

2

[
u(t)
y(t)

]>
PW,W̃

[
u(t)
y(t)

]
− 〈G0Lx(t),Lx(t)〉

≤
[

(Lx)(t, b)
(Lx)(t, a)

]> [
P1 0
0 −P1

] [
(Lx)(t, b)
(Lx)(t, a)

]
.

(5)

The matrix PW,W̃ is defined only when
[
W
W̃

]
is invertible.

Notice that in the absence of some internal dissipation

(G0 = 0) the system only exchanges energy with the
environment through the boundaries since the input and
output act on the boundary of the spatial domain.
Remark 3. As it has been pointed out in (Villegas, 2007),
if the matrices W and W̃ are selected such that PW,W̃ =
[ 0 I
I 0 ] = Σ, then the BCS fulfils 1

2
d
dt‖x(t)‖2L ≤ u>(t)y(t).

3. DYNAMIC BOUNDARY CONTROL

In what follows we consider the feedback loop of Figure
1 where the infinite dimensional system is an impedance
passive system as described in Theorem 2.!
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�

Define the output of the system as the linear mapping

C : L−1H1(a, b; Rn) → Rn, y = Cx(t) := W̃

�
f∂,Lx(t)
e∂,Lx(t)

�
.

Then for u ∈ C2(0,∞; Rk), Lx(0) ∈ H1(a, b; Rn), and
u(0) = W

�
f∂,Lx(0)

e∂,Lx(0)

�
the following balance equation is

satisfied:
1

2

d

dt
�x(t)�2L =

1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
− �G0Lx(t),Lx(t)�

≤ 1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
.

(3)

The matrix PW,W̃ is defined only when
�

W
W̃

�
is invertible.

Notice that in the absence of some internal dissipation
(G0 = 0) the system only exchanges energy with the
environment through the boundaries since the input and
output act on the boundary of the spatial domain. Finally
we remark that the balance equation (3) may be rewritten
as:

1
2

d

dt
�x(t)�2L ≤

�
(Lx)(t, b)
(Lx)(t, a)

�� �
P1 0
0 −P1

� �
(Lx)(t, b)
(Lx)(t, a)

�
(4)

Remark 3. As it has been pointed out in ?, if the matrices
W and W̃ are selected such that PW,W̃ = [ 0 I

I 0 ] = Σ, then
the BCS fulfils 1

2
d
dt�x(t)�2L ≤ u�(t)y(t).

3. DYNAMIC BOUNDARY CONTROL

In what follows we consider the feedback loop of Figure ??
where the infinite dimensional system is is an impedance
passive system as described in Theorem 2. This intercon-
nection is power preserving and satisfies:

u = r − yc, uc = y

Furthermore we consider that the controller satisfies As-
sumption 4
Assumption 4. We consider a controllable, observable and
exponentially stable port Hamiltonian controller on the
form:

v̇ = (Jc −Rc)Qcv + Bcuc,
yc = BT

c Qcv
(5)

with state space v ∈ V = Rm, set of input values
uc ∈ Uc = Rn and set of output values yc ∈ Y = Rn.
The set Uc of admissible inputs consists of all Uc-valued
piecewise continuous functions defined on R. Jc, Rc , Qc

and Bc are constant real matrices of dimension m × m,
m ×m, m ×m, and m × n, respectively with Jc = −JT

c ,
Rc = RT

c ≥ 0 and Qc > 0 such that (Jc−Rc)Qc is Hurwitz.

From Kalman-Yakubovich-Popov Lemma the controller
satisfi
Proposition 1. There exist matrices P = PT > 0, P ∈
Rm,m, L ∈ Rm,n such that:

P (Jc −Rc)Qc + QT
c (Jc −Rc)T P = −LLT (6)

(7)

4. ASYMPTOTIC STABILITY

Theorem 5. ?? Let the state of the open-loop BCS satisfy
1
2

d
dt�x(t)�2L ≤ u�(t)y(t). Consider a LTI finite dimensional

system with storage function Ec(t) = 1
2 �v(t), Qcv(t)�Rm ,

Qc = Q�
c ≥0 ∈ Rm × Rm satisfying Assuption 4. Then

the feedback interconnection of the BCS and the finite
dimensional system is again a BCS on the extended state
space x̃ ∈ X̃ = X × V with inner product �x̃1, x̃2�X̃ =
�x1, x2�L + �v1, Qcv2�V . Furthermore, the operator Ae

defined by

Aex̃ =
�
JL 0
BcC Ac

� �
x
v

�

with

D(Ae) =

��
x
v

�
∈
�
X
V

� ���Lx ∈ HN (a, b; Rn),

�
f∂,Lx

e∂,Lx

v

�
∈ ker W̃D

�
,

where
W̃D =

�
(W + DcW̃ Cc)

�

generates a contraction semigroup on X̃.
Theorem 6. Consider the controller satisfying Assumption
4 connected to the impedance passive system as in Figure
??. Then the operator Ae described in Theorem 5 has
compact resolvant.
Theorem 7. Consider the feedback system of Figure ??
where the controller is chosen satisfying Assumption 4.
Then the closed loop system ?? such that r = 0 is globally
asymptotically stable. That is for any w(0)

5. ENERGY SHAPING

In the case of power preserving interconnection at the
boundary of the form (??), the closed loop Hamiltonian
function is equal to the sum of the Hamiltonians of the
open-loop system (plant) and the controller ???: Ẽ(x, v) =
E(x)+Ec(v). In order to use this closed loop Hamiltonian
as Lyapunov function, one has to guarantee that its
minimum is at the desired equilibrium ∂Ẽ

∂x (x∗) = 0. For
this purpose, and in a similar manner as for control of finite
dimensional port-Hamiltonian systems ?, it is possible to
relate the state variables of the controller with the state
variables of the plant by using structural invariants (i.e.,
which do not depend on the Hamiltonian) named Casimir
functions. Indeed, if it is possible to find Casimirs of the
form C(x, v) = v − F (x), with F (x) some smooth well
defined function of x, then on every invariant manifold
defined by v − F (x) = κ, with κ ∈ R a constant which
depends on the initial states of plant and controller, the
closed-loop Hamiltonian may be written as Ẽ(x, v) =
E(x) + Ec(F (x) + κ). The closed-loop Hamiltonian may
then be shaped by an appropiate choice of Ec.

In the following we give sufficient conditions such that
Casimir functions exist in the case of closed loop control
with dissipative port Hamiltonian controller.
Definition 8. ?? Consider the BCS defined by Theorem
2 with r = 0. A function C : X × V → R is a Casimir
function if Ċ = 0 along the solutions for every possible
choice of L(·) and Qc.

Following ? we will look for linear Casimir functions in the
form

C(x(t), v(t)) = Γ�v(t) +
� b

a

Ψ�(z)x(t, z)dz (8)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ�(z)x(t, z) ∈ H1(a, b; Rn).

Fig. 1. Power preserving interconnection

This interconnection is power preserving and satisfies:
u = r − yc, uc = y (6)

Furthermore the controller satisfies Assumption 4.
Assumption 4. We consider a controllable, observable and
passive port Hamiltonian controller on the form:{

v̇ = (Jc −Rc)Qcv +Bcuc,
yc = BTc Qcv

(7)

with state space v ∈ V = Rm, input values uc ∈ Uc = Rn
and output values yc ∈ Y = Rn. Moreover Jc, Rc , Qc
and Bc are constant real matrices of dimension m × m,
m ×m, m ×m, and m × n, respectively with Jc = −JTc ,
Rc = RTc ≥ 0 and Qc > 0 such that (Jc−Rc)Qc is Hurwitz.
Proposition 1. From Kalman-Yakubovich-Popov Lemma
(Willems, 1972) there exists a symmetric matrix Qd ∈ Rm,
Qd = QTd > 0 such that:

Qc(Jc −Rc)Qc +Qc(Jc −Rc)TQc = −Qd (8)

4. ASYMPTOTIC STABILITY

To prove the asymptotic stability of the closed loop system
of Figure 1 we first prove the closed loop operator gener-
ates a contraction semigroup on an extended space. Then
we prove that from contraction properties the solutions
converge to an invariant set. Finally we show this invariant
set reduces to a unique point, proving the asymptotic
stability of the closed loop system.
Theorem 5. (Villegas et al., 2005) Let the state of the
open-loop BCS satisfy 1

2
d
dt‖x(t)‖2L ≤ u>(t)y(t). Consider

a LTI finite dimensional system with storage function
Ec(t) = 1

2 〈v(t), Qcv(t)〉Rm , Qc = Q>c ≥0 ∈ Rm × Rm
satisfying Assuption 4. Then the feedback interconnection
of the BCS and the finite dimensional system is again
a BCS on the extended state space x̃ ∈ X̃ = X × V
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with inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L + 〈v1, Qcv2〉V .
Furthermore, the operator Ae defined by

Aex̃ =
[
JL 0
BcC (Jc −Rc)Qc

] [
x
v

]
(9)

with

D(Ae) =

{[
x
v

]
∈
[
X
V

] ∣∣∣Lx ∈ HN (a, b; Rn),

[
f∂,Lx
e∂,Lx
v

]
∈ ker W̃D

}
,

where
W̃D =

[
W BTc Qc

]

generates a contraction semigroup on X̃.

Proof. The proof is similar to the one presented in
(Villegas, 2007, Theorem 5.8, pp:120) but in the case of the
use of a Port Hamiltonian structure for the controller. We
also consider that a subset of the boundary conditions of
the infinite dimensional system can be set to zero through
a rank deficiency of Bc. The proof is performed in two
steps. First we have to prove that there exists an operator
B ∈ L(U, X̃) such that for all u ∈ U , Bu ∈ D (Ae) ×
Rn, and [B Cc] Bu = u. Such operator exists as soon
as W̃D is full rank. In the present case the condition is
satisfied as W is full rank. Secondly we need to prove that
Ae generates a semigroup. For that we use the Lümer-
Pillips theorem (Jacob and Zwart, 2012, Theorem 6.1.7,
pp:69) which is divided in two parts: showing that Ae
is a dissipative operator (i.e. Re〈Aex̃, x̃〉 ≤ 0) and that

ran(I−Ae) = X̃ = X×V . Let consider ω =
[
x
v

]
∈ D (Ae)

then we have (X̃ is a real Hilbert space equiped with the
product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L + 〈v1, Qcv2〉V ):
〈Aeω, ω〉X̃ = 〈J Lx, x〉L + 〈(Jc −Rc)v +BC , Qcv〉V (10)

After some computation and using Equations (3), (4), and
(8) the product can be written:

〈Aeω, ω〉X̃ = −vTQdv ≤ 0 (11)

The second part of the proof, ran(I −Ae) = X̃, follows as
soon as the matrix (I − (Jc−Rc)Qc) is non-singular. This
is true as all the eigenvalues of the matrix (Jc−Rc)Qc are
in the left half of the complex plane.

The closed loop system can be written:
˙̃x = Aex̃, x̃(0) ∈ X̃
r(t) =

[
B BTc Qc

]
x̃ (12)

y(t) = [ C 0 ] x̃
Theorem 6. Consider the controller satisfying Assumption
4 connected to the impedance passive system as in Figure
1. Then the operator Ae described in Theorem 5 has
compact resolvant.

Proof. See (Villegas, 2007, Theorem 5.9, pp:122)

It is then possible to prove the asymptotic stability in case
of exponentially stable controller of the form (7).
Theorem 7. Consider the feedback system of Figure 1
where the controller is chosen satisfying Assumption 4.
Then the closed loop system (1) such that r = 0 is globally
asymptotically stable.

Proof. Let first consider that ω(0) ∈ D (Ae). By Theorem
5, we know that Ae generates a contraction semigroup. Let

now consider the energy as Lyapunov function Ec(t) =
1
2 〈ω(t), ω(t)〉X̃ . Since ω(0) ∈ D (Ae) we know that ω(t)
is differentiable and we can derive after some simple
computation:
dEc(t)
dt

= 〈ω̇(t), ω(t)〉X̃ = 〈Aeω(t), ω(t)〉X̃ = −vTQdv
(13)

where Qp > 0. Since (λI −Ae)−1 is compact and the semi-
group is a contraction it follows from LaSalle’s invariance
principle that all solutions of 12 asymptotically tend to
the maximal invariant set Oc =

{
x̃ ∈ X̃|Ėc = 0

}
. Let E

be the largest invariant subset of Oc. We are now going
to prove that E = {0}. From Ėc(t) = 0 and (13) we have
v(t) = 0 and then v̇(t) = 0. Let η < n be the rank of
ker(Bc). Form (7) yc = 0 and n − η > 0 components of
uc equal 0. It follows that Oc reduces to the solution of
a first order PDE of dimension n with 2n − η boundary
variables set to zero. It follows from Holmgren’s Theorem
that x̃(t) = 0, hence the asymptotic stability. The same
hold for ω(0) ∈ X̃ by using denseness argument (John,
1978).

5. ENERGY SHAPING

In the case of power preserving interconnection at the
boundary of the form (6), the closed loop Hamiltonian
function is equal to the sum of the Hamiltonians of the
open-loop system (plant) and the controller (Macchelli
et al., 2009; Macchelli and Melchiorri, 2004; Macchelli,
2012): Ẽ(x, v) = E(x) + Ec(v). In order to use this
closed loop Hamiltonian as Lyapunov function, one has to
guarantee that its minimum is at the desired equilibrium
∂Ẽ
∂x (x∗) = 0. For this purpose, and in a similar manner as
for control of finite dimensional port-Hamiltonian systems
(van der Schaft, 2000), it is possible to relate the state
variables of the controller with the state variables of the
plant by using structural invariants (i.e., which do not
depend on the Hamiltonian) named Casimir functions.
Indeed, if it is possible to find Casimirs of the form
C(x, v) = v − F (x), with F (x) some smooth well defined
function of x, then on every invariant manifold defined
by v − F (x) = κ, with κ ∈ R a constant which depends
on the initial states of plant and controller, the closed-
loop Hamiltonian may be written as Ẽ(x, v) = E(x) +
Ec(F (x) + κ). The closed-loop Hamiltonian may then be
shaped by an appropiate choice of Ec.

In the following we give sufficient conditions such that
Casimir functions exist in the case of closed loop control
with dissipative port Hamiltonian controller.
Definition 8. (Macchelli and Melchiorri, 2004; Macchelli,
2012) Consider the BCS defined by Theorem 2 with r = 0.
A function C : X × V → R is a Casimir function if Ċ = 0
along the solutions for every possible choice of L(·) and
Qc.

Following (Macchelli, 2012) we will look for linear Casimir
functions in the form

C(x(t), v(t)) = Γ>v(t) +
∫ b

a

Ψ>(z)x(t, z)dz (14)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ>(z)x(t, z) ∈ H1(a, b; Rn).
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Proposition 2. Consider the BCS defined by Theorem 2
with r = 0, and with (7) as controller. Then (14) is
a Casimir function for the extended system defined by
Theorem 5 if:

P1
∂

∂z
Ψ(z) + (P0 +G0)Ψ(z) = 0, (15)

(Jc +Rc)Γ +BcW̃R

[
Ψ(b)
Ψ(a)

]
= 0, (16)

B>c Γ +WR

[
Ψ(b)
Ψ(a)

]
= 0. (17)

Proof. The time derivative of the Casimir function is given
by
d

dt
C = Γ>

[
(Jc −Rc)Qcv +Bcuc

]

+
∫ b

a

Ψ>
[
P1

∂

∂z
(Lx) + (P0 −G0)(Lx)

]
dz (18)

The Casimir function has to be independent from L(·)
and Qc, and on other hand the power preserving intercon-
nection introduces some constraint on the possible energy
functions. To this end it is convenient to “parametrize” the
boundary port variables (f∂,Lx, e∂,Lx). Since the matrix
[W W̃ ] is invertible and PW,W̃ = Σ, we may define

[f>∂,Lx, e
>
∂,Lx]> = Σ

(
W>γ1 + W̃>γ2

)
, with γ1, γ2 ∈ Rn.

Recalling the definition of u and y (Theorem 2) and u>y+
u>c yc = 0 we have uc = γ1 and B>c Qcv = −γ2, which
implies [

f∂,Lx
e∂,Lx

]
= ΣW>γ1 − ΣW̃>B>c Qcv. (19)

Hence, the boundary port variables, and by Definition 1
also (Lx)(a) and (Lx)(b), are characterized by γ1 and Qc.
The integral term in (18) may be written as

Ψ>
[
P1

∂

∂z
(Lx) + (P0 −G0)(Lx)

]

=
∂

∂z

[
(Lx)>P1Ψ

]
− (Lx)>

[
P1

∂

∂z
Ψ + (P0 +G0)Ψ

]
.

Using (19) and uc = γ1, we may write (18) as

d

dt
C = −v>Qc(Jc +Rc)Γ + γ>1 B

>
c Γ

−
∫ b

a

(Lx)>
[
P1

∂

∂z
Ψ + (P0 +G0)Ψ

]
dz

+
[

(Lx)(b)
(Lx)(a)

]>
R>ΣR

[
(Lx)(b)
(Lx)(a)

]

where R>ΣR =
[
P1 0
0 −P1

]
. The integral term vanishes for

any L if and only if Ψ satisfies (15). Furthermore using
(2), (19) and ΣΣ = I we have
[

(Lx)(b)
(Lx)(a)

]>
R>ΣR

[
Ψ(b)
Ψ(a)

]
=

{
γ>1 W − v>QcBcW̃

}
R

[
Ψ(b)
Ψ(a)

]
,

from which (16) and (17) follows.
Remark 9. Under the hypothesis of the previous propo-
sition, assume that Γ̂ = [Γ1, . . . ,Γm] = −I. In this way
one has in closed-loop that vi(t) =

∫ b
a

Ψ>i (z)x(t, z)dz+κi,

i = 1, . . . ,m, with κi ∈ R a constant that only depends on
the initial conditions. Under this hypothesis the Hamil-
tonian function of controller becomes a function of the
state variables of the plant, and may be chosen to obtain a
desired stability profile in closed-loop, namely a (possibly)
global minimum at the desired equilibrium configuration.

6. DNA-MANIPULATION PROCESS

In this section we focus on the control of a nanotweezer
used for DNA manipulation (Boudaoud et al., 2012). For
this control design a very simple model of the tweezers is
presented in Figure 2.
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Fig. 2. DNA manipulation with PH control

The trapped DNA bundle is approximated by an equiva-
lent mass spring damper system. We consider the arm of
the tweezer is clamped in z = a. We also assume that it is
only possible to measure the position at point z = a.

6.1 Model of the tweezer arm

The model of the tweezer arm is based on Timoshenko
beam model. The Timoshenko beam has been widely stud-
ied as a distributed parameter port Hamiltonian system
(Macchelli and Melchiorri, 2004) and as BCS (Le Gorrec
et al., 2005). The model of the Timoshenko beam is written
as:

∂

∂t



x1

x2

x3

x4


 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




︸ ︷︷ ︸
P1

∂

∂z




Kx1
1

ρ
x2

EIx3
1

Iρ
x4


+




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0




︸ ︷︷ ︸
P0




Kx1
1

ρ
x2

EIx3
1

Iρ
x4


 (20)

where the following state (energy) variables have been
defined: x1 = ∂w

∂z (z, t) − φ(z, t) the shear displacement,
x2 = ρ(z)∂w∂t (z, t) the transverse momentum distribu-
tion, x3 = ∂φ

∂z (z, t) the angular displacement, and x4 =
Iρ
∂φ
∂t (z, t) the angular momentum distribution, for z ∈

(a, b), t ≥ 0, where w(t, z) is the transverse displacement
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of the beam and φ(t, z) is the rotation angle of a filament
of the beam. The coefficients ρ(z), Iρ(z), E(z), I(z) and
K(z) are the mass per unit length, the rotary moment of
inertia of a cross section, Young’s modulus of elasticity, the
moment of inertia of a cross section, and the shear modulus
respectively. The matrices P1 and P0 defines the skew-
symmetric differential operator of order 1 acting on the
state space X = L2(a, b,R4), J = P1

∂
∂z + P0. The energy

of the beam is expressed in terms of the energy variables,
E = 1

2

∫ b
a

(
Kx2

1 + 1
ρx

2
2 + EIx2

3 + 1
Iρ
x2

4

)
dz = 1

2‖x‖2L. The
boundary port variables are obtained by using integration
by parts and factorization in order to define an extended
Dirac structure including the boundary (Le Gorrec et al.,
2005). They also can be directly parametrized from P1 (Le
Gorrec et al., 2005; Villegas, 2007) leading to:

[
f∂,Lx
e∂,Lx

]
=




(ρ
−1
x2)(b)− (ρ

−1
x2)(a)

(Kx1)(b)− (Kx1)(a)

(I
−1
ρ x4)(b)− (I

−1
ρ x4)(a)

(EIx3)(b)− (EIx3)(a)

(ρ
−1
x2)(b) + (ρ

−1
x2)(a)

(Kx1)(b) + (Kx1)(a)

(I
−1
ρ x4)(b) + (I

−1
ρ x4)(a)

(EIx3)(b) + (EIx3)(a)



.

The control objective is to control the translational po-
sition of the DNA-bundle. The physical ports are given
by the translational force acting at the base of the beam
(input), and the translational velocity at the base of the
beam (output). All physical ports are hence located on
the point a of the beam and directly associated with
the dynamic of the suspension mechanism and/or base of
the beam. In order to achieve that the input and output
variables of the flexible arm coincide with the physical ones
we define the following input and outputs for the beam:
u = [v(b) ω(b) −v(a) −ω(a)] , y = [Γ(b) T (b) F (a) T (a)] ,

which is achieved by defining u = W
[
f∂,Lx
e∂,Lx

]
, y =

W̃
[
f∂,Lx
e∂,Lx

]
where

W =




1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1

1 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 −1


 , W̃ =




0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0

0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0


 .

It can by shown that with this choice of input and output
the system (20) defines an abstract boundary control
system. Furthermore Ax = P1(∂/∂z)(Lx) + P0Lx with
domain D(A) =

{
Lx ∈ H1(a, b; Rn)

∣∣∣
[
f∂,Lx
e∂,Lx

]
∈ kerW

}

generates a contraction semigroup on X and the energy
balance equation is defined as: dE

dt = uT y

6.2 Finite dimensional controller model

At point b the DNA-bundle is represented by the sim-
ple Mass-spring-damper system of Figure 1 and thus
admits a port Hamiltonian system representation. Then
we can write by using vb = (xb,mbẋb, θb,mbωb)T , ub =
[F (b) T (b)]T and yb = [v(b) ω(b)]T :

v̇b = (Jb −Rb)
dEb
dvb

+ gbub, yb = gTb
dEb
dvb

with Eb the energy of the system (sum of the ki-
netic and potential energies): Eb(xb,mbẋb, θb, Jbωb) =
kb
2 x

2
b + 1

2M (Mẋc2)2 + kθb
2 θ2

b + 1
2Jb

(Jbωb)2 and Jb =

[
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

]
, Rb =

[
0 0 0 0
0 fb 0 0
0 0 0 0
0 0 0 fθb

]
, gTb = [ 0 1 0 0

0 0 0 1 ] , where fb

and fθb are the damping and the rotational damping con-
stants at the interconnection point. At point a the shuttle
is represented by a Mass-spring-damper system and is
interconnected to the Port Hamiltonian Controller that
basically acts as a programmable damping and stiffness.
The resulting dynamic system is given by:

v̇a = (Ja −Ra)
dEa
dva

+ gaua, ya = gTa
dEa
dva

with Ea(xa,maẋa) = 1
2 (−k + kc)x2

a + 1
2mb

(maẋa)2 the
energy of the system. Ja =

[
0 1
−1 0

]
, Rb =

[
0 0
0 fa+fc

]
, gTa =

[ 0 1 0
0 0 0 ] . Finally the overall finite dimensional system can

be written:

v̇ = (Jc −Rc)
dEc
dv

+ gcuc, yc = gTc
dEc
dv

with v = [ xb, mbẋb, θb, Jbωb, xa, maẋa ], Ec(v) =
Eb(vb) + Ea(va) and:

Jc −Rc =
[
Ja −Ra 0

0 Jb −Rb

]
, gc = [ ga gb ]

6.3 Casimirs

The Casimir functions are looked under the form (14)
such that it satisfies equations (15), (16) and (17). More
precisely the Casimir functions are constant functions
(that do not depend on t neither on z):

C(x, v) = κ = ΓT v +
∫ b

a

Ψ(z, t)Tx(z, t)dz

satisfy:

• from condition (15):
Ψ1 = C1

Ψ2 = C4z + C2

Ψ3 = −C1z + C3

Ψ4 = C4

where Ci, i ∈ [1, · · · , 4] are constants.
• from condition (16):

Γ2 = Γ4 = Γ6 = 0 (21)
Γ1 = −Ψ1(b) (22)

Γ3 = Ψ3(b) (23)
Γ5 = −Ψ1(a) (24)

• from condition (17):
Γ2 = −Ψ2(b) (25)
Γ4 = −Ψ4(b) (26)
Γ6 = −Ψ2(a) (27)

Ψ3(a) = 0 (28)

From (21), (25) and (27), C2 = C4 = 0 and Ψ2 = Ψ4 = 0.
Then (26) is satisfied. From (28) C3 = −aC1 and then
Γ1 = −C1,Γ3 = −C1(a+ b),Γ5 = C1 from (22), (23), and
(24) respectively. Then the Casimir functions are defined
as:

κ = −C1xb−C1(a+b)Θb+C1xa+
∫ b

a

C1 (x1 − (z + a)x3) dz

(29)
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6.4 Control design

The goal of the control law is to shape the total energy
Ed(vb, x, va) such that it presents a minimum in the
desired position of the tip of the arm, i.e.: x∗b = x∗b,c and

ẋ∗b = 0, θ̇b
∗

= 0, φ∗a = 0, φ̇∗a = 0. The degrees of freedom
we use for control design are the programmable ”stiffness”
and ”damping” kc and fc. The total energy is given by

Ed(vb, x, va) = Eb(xb) + E(x) + Ea(xa, pa)
From (29) we have:

Ed(xb, x, pa) = Eb(xb) + E(x) + Ea(F (xb, x), pa)
Taking into account that

Ea =
1
2

(f + kc)xa +
1

2ma
p2
a

we can write:

∂Ed
∂x

=
∂E

∂x
+
∂F

∂x

T ∂Ea
∂xa

=
∂E

∂x
+ Ψ

1
2

(ka + kc)xa (30)

∂Ed
∂vb

=
∂Eb
∂vb

+ Γ
1
2

(ka + kc)xa (31)

∂Ed
∂pa

= ẋa (32)

E admits a minimum in (x∗b , x
∗, p∗a) if equations (30,31,32)

equal zero for (xb, x, pa) = (x∗b , x
∗, p∗a). It is the case for

(32) if ẋ∗a = 0. Using the notation α∗ = (ka + kc)x∗a we
derive from (31) at the equilibrium:

kbx
∗
b + Γ1α

∗ = 0, kθbθ
∗
b + Γ3α

∗ = 0, ẋ∗b = 0
and then

θ∗b =
Γ3kb
Γ1kθb

x∗b

From (30) we deduce x∗2 = x∗4 = 0 and:
Kx∗1 + Ψ1α

∗ = 0, EIx∗3(z) + Ψ3(z)α∗ = 0

Taking into account that x3∗ = ∂φ∗(z)
∂z we derive:

φ∗(z) =
∫ z

a

(
− α

∗

EI
Ψ3

)
dz =

C1α
∗

EI

(
z2

2
+ az − 3a2

2

)

and then

φ∗(b) =
C1α

∗

2EI

(
(a+ b)2 − 4a2

)

Furthermore x∗1 = ∂ω(z)
∂z − φ(z) and:

w∗(z) = w∗(a) + x∗1 (z − a) +
C1α∗

2EI

(
z3

6
+
az2

2
− 3a2z

2
+

5a3

6

)

Using the fact that the beam is clamped (w∗(a) = 0) to
the moving shuttle we can write: x∗a = x∗b + w∗(b): and:

x∗a = x∗b

(
1 +

kb

K
(b− a) +

C1kb

2EIΨ1

(
b3

6
+
ab2

2
− 3a2b

2
+

5a3

6

))

︸ ︷︷ ︸
f(x∗

b
)

and then:
kc(x∗b) = −ka −

kbx
∗
b

Ψ1f(x∗b)
(33)

Using (33) for x∗b = x∗b,c allows to assign the desired closed
loop equilibrium state. fc is designed in order to assign the
dissipation rate. Indeed:

dEd
dt

= −dEc
dv

T

Rc
dEc
dv

< −fcx2
a

7. CONCLUSION

In this paper we considered a class of one dimensional
boundary controlled port Hamilonian systems intercon-
nected in a energy preserving way to some port Hamilto-
nian controllers. During this interconnection we took into
account some clamping conditions by a rank deficiency of
the input/output matrices of the controller. We proved
the asymptotic stability of the closed loop system as soon
as the controller is exponentially stable and derived some
necessary conditions for the existence of structural invari-
ants named Casimir functions. These Casimir can be used
to link the controller states to the system states in order
to stabilize the system and shape the closed loop energy
function to have a minimum at the desired state. This
approach has been applied to a micromanipulation process
leading to a simple Proportional Derivative control law.
The main perspective of this work is the generalization of
such approach to non linear systems.
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