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Abstract: Irreversible port Hamiltonian systems are a class of pseudo Hamiltonian systems that
expresses both the conservation of energy and the irreversible entropy production as a structural
property. These systems encompass a large class of irreversible themordynamic systems, such as
heat exchangers and chemical reactors, and also multi-energy systems such as coupled mechanic-
thermodynamic systems. In recent work the irreversible port-Hamiltonian formulation has been
used to derive a closed-loop stability condition using an energy based availability function,
generated by the internal energy, as Lyapunov function. This paper presents an important
extension of the previous results: the system theoretic interpretation of the stability condition in
terms of conjugated inputs and outputs and the formulation of the control as an interconnection
and damping assignment - passivity based control problem. A constructive method to derive the
stabilizing control law is proposed and the formalism is illustrated on a general CSTR example.
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1. INTRODUCTION

The attempts to model irreversible processes as PHS
have lead to a class of system called quasi PHS (Hangos
et al., 2001; Otero-Muras et al., 2008; Ramirez et al.,
2009; Dörfler et al., 2009; Hoang et al., 2011). These
systems retain much of the port Hamiltonian structure,
but differ by their structure matrices and input vector
fields which depend explicitly on the gradient of the
Hamiltonian. An important remark is that, although the
forms of PHS and quasi PHS are very similar and both
embed, by skew-symmetry of the structure matrix, the
conservation of the Hamiltonian, in the latter the drift
dynamic is a nonlinear function in the gradient ∂U

∂x (x). In
this sense the symplectic structure of the PHS, given by
the Poisson tensor associated with the structure matrix
J(x), is destroyed. From a control perspective it is usually
more complicated to impose a desired closed-loop dynamic
on quasi PHS since passivity based techniques can not be
easily applied due to the non-linearity with respect to the
gradient of the Hamiltonian.

In Ramirez et al. (2013b) a class of quasi PHS, denoted
Irreversible Port Hamiltonian Systems (IPHS), has been
proposed to model a large class of thermodynamic systems
and to embed the first (conservation of the Hamiltonian)
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and the second principle (irreversible increase of an en-
tropy like function). IPHS have two important properties:
they provide an irreversible non-linear system a physi-
cally meaningful structure (just as PHS for mechanical
systems); and they are defined with respect to the total en-
ergy, which makes it possible to interconnect them with re-
versible non-linear systems (mechanical systems) (Ramirez
et al., 2013c), which is not the case for formulations defined
with respect to the total entropy for instance.

In Ramirez et al. (2013a) the framework of IPHS has
been combined with the framework of thermodynamic
availability function to derive an asymptotic stability
condition for irreversible thermodynamic systems. Indeed,
since the closed-loop equilibrium differs from the open-
loop equilibrium it is necessary to perform the closed-loop
stability analysis with respect to a modified Hamiltonian,
which in our case is derived departing from the total energy
(open-loop Hamiltonian). In this paper we specialize the
previous result for input-affine IPHS (Section 2) and
interpret the stability condition in terms of interconnection
and damping assignment - passivity based control (Ortega
et al., 2001, 2002) (Section 3). It is interesting to see
that the closed-loop system can again be interpreted
as an irreversible thermodynamic systems with respect
to a modified thermodynamic potential (Section 3). A
constructive method to derive the stabilizing control law
is proposed and the formalism is illustrated on a general



CSTR example (Section 4). Finally (Section 5), some
closing remarks and comments on future work are given.

2. IRREVERSIBLE PORT-HAMILTONIAN SYSTEMS

Irreversible Port Hamiltonian Systems (IPHS) have been
defined in Ramirez et al. (2013b) as a modification of
Port Hamiltonian systems (PHS) and allow to represent
simultaneously the conservation of energy and the entropy
creation due to an irreversible processes. An IPHS uses two
thermodynamic potentials in order to define the dynamics:
the total energy and the total entropy of a thermodynamic
system and is defined as follows.

Definition 1. An input affine IPHS is defined by the dy-
namic equation

ẋ = R
(
x, ∂U∂x ,

∂S
∂x

)
J
∂U

∂x
(x) + g

(
x, ∂U∂x

)
u,

y = g>
(
x, ∂U∂x

) ∂U
∂x

(x)

(1)

where x ∈ Rn is the state vector, U(x) : C∞(Rn) → R
is the Hamiltonian function (for thermodynamic systems,
the internal energy) and S(x) : C∞(Rn) → R is a real
function (for thermodynamic systems the total entropy
function), J ∈ Rn×n is the constant skew-symmetric
structure matrix of the Poisson bracket acting on any two
C∞(Rn) functions Z and G as:

{Z,G}J =
∂Z

∂x

>
(x)J

∂G

∂x
(x). (2)

The drift term of the system (1) differs from a Hamiltonian
system by the multiplication by the real function R =
R
(
x, ∂U∂x ,

∂S
∂x

)
. This function is composed of the product

of a positive definite function γ and the Poisson bracket of
the entropy function S (x) and the energy function U (x):

R
(
x, ∂U∂x ,

∂S
∂x

)
= γ

(
x, ∂U∂x

)
{S,U}J ,

with γ(x, ∂U∂x ) = γ̂(x) : C∞(Rn) → R, γ̂ ≥ 0, a non-
linear positive function. The input map is defined by
g(x, ∂U∂x ) ∈ Rn×m with the input u(t) ∈ Rm a time
dependent function.

The balance equations of the entropy function S (x) and
the energy function U (x) of the IPHS express the first
and second principles of the irreversible thermodynamics:
the conservation of energy and the irreversible entropy
creation due to the irreversible processes. Indeed consider
the balance equation of the internal energy, one computes

dU

dt
= y>u.

where u(t) and y(z) are the input and output port of the
system. This is precisely the balance equation correspond-
ing to lossless dissipative systems with the (energy) supply
rate y>u. The balance equation of the entropy function is
given by

dS

dt
= R

(
x, ∂U∂x ,

∂S
∂x

) ∂S
∂x

>
J(x)

∂U

∂x
+
∂S

∂x

>
g
(
x, ∂U∂x

)
u

= γ
(
x, ∂U∂x

)
{S,U}2J +

(
g>
(
x, ∂U∂x

) ∂S
∂x

)>
u

From the assumptions defining the IPHS (Definition 1) the
first term is positive: γ

(
x, ∂U∂x

)
{S,U}2J = σ

(
x, ∂U∂x

)
≥ 0

which represents for models of irreversible thermodynamic

systems, the internal entropy production. The second term
corresponds to the definition of an entropy supply rate. For
further details on IPHS and its thermodynamic interpre-
tation we refer the reader to Ramirez et al. (2013b).

3. IDA-PBC FOR IPHS

In Ramirez et al. (2013a) the framework of IPHS and
available storage (Willems, 1972) has been used to propose
a class of PBC for irreversible thermodynamic systems.
Using the convexity of the internal energy, the Hamiltonian
function of an IPHS has been used as convex extension to
define an energy based availability function which serves
as Lyapunov function for the closed-loop system. This has
been done using the same thermodynamic arguments as for
instance in Alonso and Ydstie (1996); Ydstie and Alonso
(1997); Alonso and Ydstie (2001); Ydstie (2002); Hoang
et al. (2011, 2012), being the difference that in our case the
closed-loop Lyapunov function is generated by the energy
of the system and not the entropy. This permits to state
the control problem similarly as for mechanical systems,
with the difference that the irreversible nature of IPHS
introduces an “interconnection obstacle” (Ramirez et al.,
2013c), also refereed as “dissipation obstacle” in the case
of dissipative PHS (Ortega et al., 2001). In this section
we shall elaborate on the IDA-PBC method for deriving a
stabilizing control for which the closed-loop Hamiltonian
function is the energy-based availability function, i.e., we
will investigate the existence of controls that renders the
closed-loop system into the form

ẋ =M(x)
∂A

∂x
(x)

where A is the energy-based availability function and
M(x) the closed-loop structure matrix, possibly defining
an (dissipative) IPHS.

3.1 The Energy based availability function

Let us briefly recall some fundamental properties of irre-
versible homogeneous thermodynamic systems and more
precisely the notion of the thermodynamic availability
function associated with the internal energy (Ramirez
et al., 2013c). The variation of the internal energy of an
homogeneous system is defined by Gibbs’ fundamental
equation on a N -dimensional state space:

dU = TdS − PdV +

N−2∑
i=1

µidni (3)

where the extensive variables are the internal energy
U , the entropy S, the volume V and the mole num-
bers ni, and the intensive variables are the temper-
ature T , the pressure P and the chemical potentials
µi. By defining the vectors of extensive and inten-
sive variables, z = [S, V, n1, . . . , nN−2]> and w(z) =
[T (z),−P (z), µ1(z), . . . , µN−2(z)], (3) may be written as

dU = w(z)>dz. (4)

The internal energy U is a homogeneous function of degree
1, so from Euler’s Theorem we obtain,

U = w(z)>z, (5)

which implies that w(z) is a homogeneous function of
degree 0 of z and w(z) = ∂U

∂z (z). For homogeneous systems,



as a consequence of the second law of Thermodynamics
(Callen, 1985; Alonso and Ydstie, 2001), the internal
energy corresponds to a convex function. Furthermore the
internal energy function is strictly convex with respect
to z and independent of the dynamic behaviour of the
system if one of the extensive variables, i.e. one of the
elements in z, is fixed (Jillson and Ydstie, 2007). For
thermodynamic systems, the total energy function (and
hence also the total entropy function) only possesses a
strict minimum at the thermodynamic equilibrium, which
does not coincide with the desired dynamic equilibrium.
Indeed, at thermodynamic equilibrium the system does
not undergo any irreversible transformation, hence it is
not of practical interest.

Since the Hamiltonian of IPHS is the total energy it is
natural to derive a closed-loop Lyapunov function using
the convexity of the total energy, rather than the concavity
of the total entropy. Recalling Definition 1, and taking x
as the state vector of the IPHS of we give the definition of
the energy based availability function and the closed-loop
stability condition.

Definition 2. The energy based availability function is
given by

A(x, x∗) = U(x)−
[
U(x∗) +

∂U

∂x
(x∗)>(x− x∗)

]
≥ 0 (6)

where x∗ is a reference and possibly a desired equilibrium.
For a thermodynamic system A becomes a strictly convex
with minimum value A = 0 if one of the extensive variables
is fixed (Jillson and Ydstie, 2007), i.e., if z ∈ RN−1 = Rn

and the state space is chosen as x = z. Furthermore, the
only possible value for which A = 0 is x = x∗.

The reader is refereed to Alonso and Ydstie (1996); Yd-
stie and Alonso (1997); Alonso and Ydstie (2001); Ydstie
(2002) for further details on the construction and ther-
modynamic properties of the availability function. It is
clear from Definition 2 that the energy based availability
function qualifies as a Lyapunov function candidate for
controlled IPHS.

Proposition 1. The closed-loop equilibrium x∗ of a con-
trolled IPHS is asymptotically stable if A is strictly convex
and the control u (x) satisfies:

γ {S,U}J {A,U}J +

(
∂U

∂x
(x)− ∂U

∂x
(x∗)

)>
gu ≤ 0, (7)

with strict equality only at (x∗, u∗), the steady state value
at the desired equilibrium.

Proof. The time derivative of A is given by

dA

dt
=

(
∂U

∂x
(x)− ∂U

∂x
(x∗)

)>
dx

dt
. (8)

Using Definition 1 we obtain the balance equation of the
availability function

dA

dt
= −R

(
∂U

∂x
(x∗)>J

∂U

∂x
(x)

)
+(

∂U

∂x
(x)− ∂U

∂x
(x∗)

)>
gu,

= γ {S,U}J {A,U}J +(
∂U

∂x
(x)− ∂U

∂x
(x∗)

)>
gu,

(9)

By positivity of γ and since the availability A qualifies as a
Lyapunov function for the system it is stable if (7) holds.
If x∗ is an isolated minimum, which is the case if A is
strictly convex, then asymptotic stability follows invoking
La Salle’s invariance principle on a region around x∗.

3.2 The IDA-PBC problem

Proposition 1 provides an asymptotic stability condition
for the closed-loop IPHS, but provides no constructive in-
formation on how to choose the control input u. Moreover,
it is interesting to investigate what (7) represents in the
sense of passivity based control. Using the port-conjugated
output, we may rewrite (7) as

γ {S,U}J {A,U}J + y>u− ∂U

∂x
(x∗)>gu ≤ 0. (10)

Let us define the availability-conjugated output defining
an availability supply rate in the balance equation (9) of
the availability function

ỹ = g>
(
∂U
∂x (x)− ∂U

∂x (x∗)
)

= g> ∂A
∂x (x), (11)

which actually only becomes zero at the desire equilibrium.
Then, the stability condition (10) becomes

γ {S,U}J {A,U}J + ỹ>u ≤ 0. (12)

Now, define the control input as u = γ {S,U}J ũ, with ũ
a new control input, to obtain

γ {S,U}J {A,U}J + γ {S,U}J ỹ
>ũ ≤ 0

γ {S,U}J
(
{A,U}J + ỹ>ũ

)
≤ 0

(13)

Notice that this condition may be compared to the stabi-
lization condition for reversible Hamiltonian systems. In
this case one considers 1 instead of R = γ {S,U}J and
the condition {A,U}J + ỹ>ũ ≤ 0 expresses the decrease of
the closed-loop Hamiltonian function, chosen as candidate
Lyapunov function. In that case, it suffices to select the
control input as the static output feedback ũ = −Kỹ, with
K = K> > 0, to stabilize the closed-loop system, since
{U,U}J (x) = ỹ(x∗) = 0. For Irreversible Port Hamilto-
nian systems, from (13) we see however that this condition
is modulated by the nonlinear term R = γ {S,U}J , which
is not signed defined since the thermodynamic driving
force {S,U}J may take positive or negative values. A
particular solution to (13) is

ỹ>ũ = −{A,U}J − {S,U}J [A,A]M + {A,A}J′ (14)

where J ′(x) is any skew symmetric matrix defining a
Poisson bracket, and M(x) is a symmetric and positive
semi-definite matrix defining a pseudo-Riemannian metric
expressed by the Ginzburg-Landau dissipative bracket, de-
fined in some local coordinates for two C∞(Rn) functions
Z and G as,

[Z,G]M =
∂Z

∂x

>
(x)M(x)

∂G

∂x
(x). (15)

Notice that {A,A}J′ = 0 and does not contribute in (13).
This bracket is included however since it shows that the
closed-loop vector field may be shaped without injecting
more damping into the system. This is referred to as the
interconnection assignment. Now, using the definition of ỹ
(Eq. (11)) we have that the unique solution to (14) is



β(x) =

g†(x)
(
− {S,U}JM(x) + J ′(x)

)(∂U
∂x

(x)− ∂U

∂x
(x∗)

)
− g†(x)J

∂U

∂x
(x), (16)

which exists if and only if

− g⊥(x){S,U}JM(x)

(
∂U

∂x
(x)− ∂U

∂x
(x∗)

)
+ g⊥(x)

((
J ′ − J

)∂U
∂x

(x)− J ′ ∂U
∂x

(x∗)

)
(17)

with g†(x) = [g>(x)g(x)]−1g>(x) the Moore-Penrose
pseudo inverse and g⊥(x) a left full rank annihilator of
g(x), i.e., g⊥(x)g(x) = 0. Equations (16 and (17) express
the well known IDA-PBC problem, but for irreversible
control system.

Let us compare more in details this solution with the
solution for a reversible port-Hamiltonian system

ẋ = J
∂U

∂x
+ gũ (18)

keeping the same target system corresponding to the
equivalent IDA-PBC problem defined by equations (16)
and (17). The target system is then given by

ẋ =
(
− {S,U}JM(x) + J ′(x)

)∂A
∂x

, (19)

where the matrix {S,U}JM(x) is not necessary positive
semi-definite, since {S,U}J is of arbitrary sign. This
“contradiction” comes of course from the definition of the
control input, u = γ {S,U}J ũ, but it also expresses the
irreversible nature of the control system. The system is
already dissipative, hence damping injecting is not the
issue. The issue is to make the closed-loop system dissipate
in such a way that it is stable. This contradiction has been
reported in the literature as the “dissipation obstacle” for
reversible PHS (Ortega et al., 2001), and more recently, as
the “interconnection obstacle” for IPHS (Ramirez et al.,
2013c). The previous results can be summarized as follows.

Proposition 2. Consider the input affine IPHS (1). As-
sume A is strictly convex and that there exist matrices
M(x) ≥ 0 and J ′(x) = −J ′>(x), and a full-rank left
annihilator g⊥(x) of g(x) that verify (17). Then the control
u = γ {S,U}J β(x), with β(x) defined as in (16), asymp-
totically stabilizes the closed-loop equilibrium x∗. Further-
more, the closed-loop system is given by the pseudo-PHS

ẋ =
(
− σM(x) +RJ ′(x)

)∂A
∂x

. (20)

Proof. The proof follows directly from the previous devel-
opments and (20) is obtained by replacing the control law
u = γ {S,U}J β(x) in (1).

In some cases it is possible to use the physical properties
of a system to solve (17). For instance, if we don’t want
to change the open-loop structure/interconnection matrix,
and only express the natural dissipation of the system with
respect to A, then the simplest choice is some constant
M > 0 and J ′ = J .

Corollary 3. Assume J ′ = J , then the closed-loop equilib-
rium x∗ is asymptotically stable if

g⊥(x)J
∂U

∂x
(x∗) = 0, and (21)

g⊥(x)M(x) = 0. (22)

The second condition of Corollary 3 is in general easy
to fulfil since the only restriction on M is that it is
positive semi-definite and symmetric. The first condition
is however very restrictive, since J , U(x) and g(x) (and
hence also g⊥(x)) are defined by the physical system.
Nevertheless, since J expresses the conserved quantities
of the thermodynamic process we may find this condition
automatically fulfilled for systems whose inputs are related
with the physical invariants. This point will be illustrated
on the example of the CSTR.

4. EXAMPLE: THE CSTR

Assume a chemical reaction in a CSTR with the following
reversible reaction scheme

ν1B1 + . . .+ νlBl 
 νl+1Bl+1 + . . .+ νmBm, m > l ≥ 1.

where where Bi denotes the ith chemical species, ν̄i is the
signed stoichiometric coefficient: ν̄i = −νi if it appears
on the left hand side of the reaction scheme, ν̄i = νi in
the other case. We shall consider that the CSTR satisfies
the following standard operation assumptions (Aris, 1989;
Favache and Dochain, 2009)

Assumption 4.

• The volume, denoted by V , in the reactor is constant
as well as the pressure,

• The initial number of moles of a specie in the reactor
is equal to the number of moles of the inlet of the
same specie,

• For a given steady state temperature and steady state
input there is only one possible steady state for the
mass (numbers of moles) balance.

• The reactor operates at gas phase,
• The controlled inputs are the the dilution rate u1 =
F/V and the heat flux from the cooling jacket u2 = Q.

We have assumed a reaction in gas phase, but the devel-
opments may be applied identically to a reactor with a
reaction in liquid phase. The assumptions of constant vol-
ume and pressure impose a constraint over the total outlet
flow (Couenne et al., 2006, 2008), making the outlet flows
state dependent. Furthermore this assumption guarantee
that the energy based availability function A is strictly
convex.

The mass balance equations The time variation of the
species in the reactor are given by (Aris, 1989)

ṅi =
F

V
(nei − ni) + riV i = 1, . . . ,m (23)

where ni and nei are, respectively, the number of moles
of the species i in the reactor and at the inlet (and

n = (n1, . . . , nm)
>

and nei = (ne1, . . . , nem)
>

), ri = ν̄ir
where r (n, T ) is the reaction rate which is the difference
of the forward reaction rate rf and the backward reaction
rate rb: r = (rf −rb) and depends on the temperature and
on the reactant mole number and F is the volumetric flow
rate.



The energy and entropy balance equations Under As-
sumption 4 the internal energy of the CSTR is given by
(Couenne et al., 2006; Favache and Dochain, 2009)

U =

m∑
i=1

ni[cpi(T − T0) + u0i], (24)

where cpi, u0i, T0 are respectively the heat capacity at
constant pressure, reference molar energy and reference
temperature. The entropy balance equation may be de-
duced from Gibbs’ relation and is given by

Ṡ =
F

V

m∑
i=1

(neisei − nisi) +
Q

Te
+ σ, (25)

where sei and si are respectively the inlet molar entropy
and the molar entropy of species i, σ is the irreversible
entropy creation due to mass transfer, heat transfer and
chemical reactions:

σ =
F

V

m∑
i=1

nei
T

(hei − Tsei − µi) +
Q

T
− Q

Te
−

m∑
i=1

µiνi
r

T
,

where Q = λ(Te−T ) is the heat flux from the jacket with
λ the heat conduction coefficient, Te the temperature of
the jacket, hei the inlet specific molar enthalpy.

IPHS model (Ramirez et al., 2013b) The derivation of
the IPHS model of the CSTR has been presented in details
in Ramirez et al. (2013b). The dynamical equation of the
CSTR may be expressed as the IPHS

ẋ = RJ
∂U

∂x
(x) + g

(
x, ∂U∂x

)
u (26)

with state vector x = [n>, S]>, the internal energy U(x)
as Hamiltonian function,

J =


0 . . . 0 ν̄1

0 . . . 0
...

0 . . . 0 ν̄m
−ν̄1 . . . −ν̄m 0


a constant skew-symmetric matrix whose elements are the
stoichiometric coefficient of the chemical reaction mapping
the network structure of the reaction, and

R = γ
(
x, ∂U∂x

)
{S,U}J =

(
rV

TA

)
A

with γ = rV
TA and {S,U}J = A, where A = −

∑m
i=1 ν̄iµi is

the chemical affinity of the reaction and corresponds to the
thermodynamic driving force of the chemical reaction. The
input port of the IPHS is given by gu, with u = [u1, u2]>,
where u1 is the dilution rate F

V and u2 the heat flux from
the cooling jacket Q. The first row of the input map is the
an input and output mole number vector and second row
a thermal interaction vector,

g =

[
ñ 0

φ(x) 1
T

]
with ñ = ne−n, and φ(x) =

∑m
i=1(neisei−nisi)+nei

T (hei−
Tsei − µi).

4.1 IDA-PBC of the CSTR

In this subsection we present how to use the IPHS model
of the CSTR (open-loop model) to derive a stabilizing
control law which imposes a desired IPHS structure on
the closed-loop system. We will use Corollary 3 to show

that the state feedback 16 asymptotically stabilizes the
CSTR at a desired equilibrium point x∗. For this purpose
we select J ′ = J and should find a matrix M such that
(22) is satisfied. The first step is to find a full rank left
annihilator for the input map. One possible choice is the
(m− 1)× n matrix

g⊥(x) =


ñ2 −ñ1 0 . . . 0 0 0
0 ñ3 −ñ2 . . . 0 0 0

0 0
. . .

. . .
. . . 0 0

0 0 . . . 0 ñm −ñm−1 0

 (27)

The most restrictive condition in Corollary 3 is (21),
from which we obtain, when using the previously chosen
annihilator,

g⊥(x)J =


0 . . . 0 ν̄1ñ2 − ν̄2ñ1
0 . . . 0 ν̄2ñ3 − ν̄3ñ2
...

...
...

...
0 . . . 0 ν̄m−1ñm − ν̄mñm−1

 .
It suffices to verify that g⊥(x)J = 0, which is true if

ñ1
ν̄1

=
ñ2
ν̄2

= · · · = ñm−1
ν̄m−1

=
ñm
ν̄m

. (28)

From Assumption 4 we have that the initial numbers of
moles of each specie equals the numbers of moles at the
inlet, i.e., n(t = 0) = n0 = ne. Hence, (28) is actually
the expression of De Donder’s extent of reaction (Callen,
1985)

n0i − ni
ν̄i

= ξ, (29)

which is always true and hence (21) also. It is interesting
that (21) is automatically fulfilled for this example. This is
due to that J expresses the stoichiometry of the reaction
and g(x) the mole (mass) balance. Since the reactor
operates at constant volume, the total mass becomes an
invariant for the reaction, and g⊥(x)J = 0 is simply the
mathematical expression of this invariant.

The second condition, given by (22), can be solved by
noting that the last column of g⊥(x) is zero. This implies
that any matrix M(x) = M>(x) > 0 for which the first
m rows and columns form a null submatrix is solution to
(21). A (simple) possible choice is M = diag(0, . . . , 0, 1),
which corresponds to a matrix with all elements equal to
zero except the last element of its diagonal which is 1. The
closed-loop system takes then the form

ẋ =
(
− σM +RJ

)∂A
∂x

(x, x∗)

and the time derivative of A along the trajectories of the
CSTR is

dA

dt
= −σ(T − T ∗)2.

Hence, the “dissipation” of the energy based availability
function is related to the irreversible energy production,
which is positive definite and only zero at the thermody-
namic equilibrium (which is not included in the region of
operation of the CSTR). In order to complete the stability
proof, we need to apply La Salle’s invariance Theorem in a
sufficiently small region around T = T ∗. From Assumption
4 we have that there is only one equilibrium for each
temperature, hence we can conclude that the closed-loop
systems is asymptotically stable.



5. CONCLUSION

The stabilization of irreversible thermodynamic systems
has been studied using the framework of Irreversible port-
Hamiltonian Systems (IPHS) and the thermodynamic
availability function. The availability function is derived
from the intrinsic properties of homogeneous thermody-
namic systems, and under certain operation conditions can
be used to analyse the dynamic properties, such as the
stability, of a thermodynamic system, i.e., it may be used
as a Lyapunov function for thermodynamic systems. In a
first step, an energy based availability function has been
defined and used to derive a general asymptotic stability
condition for IPHS. It is indeed natural to use the energy,
rather than the entropy, to derive the closed-loop availabil-
ity function since the Hamiltonian of IPHS corresponds
to the total energy. Then, in a second step, the stability
condition has been developed an interpreted in terms of
the matching of vector fields, leading to an Interconnection
and Damping Assignment - Passivity Based Control (IDA-
PBC) problem. The matching condition and the definition
of the control law associated to the IDA-PB controller
clearly expresses the irreversible nature of the open-loop
system, and it is shown that the closed-loop target system
is an dissipative IPHS with the energy based availability as
Hamiltonian function. An IDA-PBC synthesis method for
IPHS has been proposed and the control design approach
has been illustrated on a general model of a chemical
CSTR.
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