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Abstract— The article addresses the position con-
trol problem of a 2 degrees of freedom (DOF)
piezoelectric cantilever by means of an embedded
magnetic-based position sensor. The active part of
the piezocantilever used in the experimental setup
is similar to cantilevers previously developed and
already used for low-frequency micro-actuators in
microrobotics devices. The contribution relies on the
estimation of the biaxial displacement of the piezo-
cantilever via conventional Hall-effect (HE) sensors,
reducing the mechanical complexity and cost aspects.
The actual sensing approach is validated via the im-
plementation of a real-time position control based on
the H∞ scheme. In comparison with high resolution
sensors, as laser or confocal chromatic (high-cost) or
capacitive displacement (bulky), the actual sensor-
control system is provides a satisfactory performance
to cope with traditional micro-positioning tasks re-
quiring a micrometer resolution. The performance
of the embedded magnetic-based position sensor is
evaluated, in open- and closed-loop, with respect the
measurements provided by a Keyence laser sensors.

I. Introduction

Piezoelectric materials are well appreciated for the
development of precise positioners. This recognition is
mainly due to the high resolution, the high bandwidth
and the high stiffness they can offer. Furthermore, the
fact that they are powered electrically makes them easy
to setup. Finally, their inherent property of physical
reversibility makes them usable for sensors, or actuators
or both (self-sensing). PZT materials (lead zirconate
titanate) which are ceramics are the most used piezo-
electric materials because they are widely available for
a low cost, and their coupling coefficient is high relative
to almost other piezoelectric materials. However, these
materials are typified by nonlinearities (hysteresis and
creep) that result in a loss of the overall accuracy of
the positioners. Moreover, many structures of positioners
(cantilever structures) yield badly damped oscillation at
their response which may compromise their stability.
To overcome these unwanted effects, different control
techniques of the positioners have been proposed. While
open-loop (feedforward) control techniques were able to
reject the nonlinearities and to damp the oscillation
with a high packageability level of the overall system
[3][4][5][6][7][8][9], their main limitation is the lack of
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robustness face to model uncertainties or to external
disturbance. Contrary to feedforward techniques, closed-
loop control techniques (feedback) can offer better ro-
bustness by rejecting the effects of the above mentionned
nonlinearities and oscillation. They also permit to reach
substantial overall performances (accuracy, repeatabil-
ity, external disturbance rejection). Different feedback
techniques have been used: PID structures with simple
tuning, passivity technique, robust H∞ technique, robust
interval techniques...[10][11][12][13]. However, feedback
control of miniaturized piezoelectric based systems and
positioners are limited to the lack of convenient sensors
as we will detail in the next paragraph. In addition, the
control of piezoelectric actuators with multiple degrees of
freedom (DOF) is not well settled. The main challenge
in such system is the couplings between the different
axis which should be considered during the control de-
sign since they may cause an unstability of the actu-
ator [14][15]. This article addresses the motion control
problem of a 2 degrees of freedom (DOF) piezoelectric
cantilevered actuator (piezocantilever) by means of an
embedded magnetic-based position sensors. While Hall
effect is proposed as a basis for the displacement sensors,
which permits high embeddability at low cost, a H∞
control is proposed for the control in order to maintain
a performances robustness.

In closed-loop, the position of the cantilever must
be measured. This can be done with several sensing
approaches. Non-contact external sensors can be used.
very high resolution is not critical, these sensors are
usually based on distance measurement with laser-based
approaches [8], [16] or with confocal chromatic-based
approaches [17], [18], [19]. Measurements based on the
observation of periodic silicium nano-patterns with op-
tical microscopy [20] are also possible when large dis-
placements have to be measured with high resolution. If
very high resolution is mandatory, interferometers have
to be implemented [21], [22]. In vacuum environnement,
electronic vision based on a Scanning Electron Micro-
scope (SEM) is also a way to estimate displacements
for nanorobotics tasks [23], [24]. The main drawback of
external sensors is the size, which is significantly big com-
pared with the micro-actuator, this fact prevents the im-
plementation/design of compact and/or embedded con-
trol systems. The difficulty increases for applications that
require multi-axial measurements. In order to overcome
such limitation, sensors are integrated micro-actuators
must be implemented (e.g. capacitive sensors) [25], [26].
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Fig. 1. Experimental setup: (1) Sensor’s conditioning circuit, (2)
Hall-effect sensors and (3) Keyence sensors.

Nevertheless, the resulting microsystem architecture is
generally complex and difficult to tune.

The novelty and contribution of the paper consists
in the estimation measurement of the piezocantilever
tip displacement acquired via a magnetic-based sens-
ing (MBS) system having embedded low-cost Hall-effect
(HE) sensors. The results presented throughout the
paper demonstrate that the MBS provide satisfactory
performances for classical microrobotics applications. It
is worth to highlight the MBS system’s embeddability
and low-cost. The MBS system is evaluated trough an
application in robust control based on a H∞ scheme.
The experimental results show the effectiveness of the
proposed sensing approach using low-cost magnetic sen-
sors and H∞ controller to regulate static and to track
slow time-varying 2D reference signals.

The paper is organized as follows. In section-II, the
experimental setup is presented. Section-III details the
estimation approach used to obtain the actuator’s dis-
placements from the raw data provided by the magnetic
sensors. While in the section-IV is presented the closed-
loop control of the piezoelectric cantilever actuator using
the H∞ robust technique. Finally section-V provides
concluding remarks and perspective works.

II. Experimental Setup

The experimental setup (Fig. 1) is composed of a 2-
DOF piezocantilever, two embedded magnetic sensors
(Fig. 2) and two external laser sensors which are used

to validate the performances of the magnetic sensors. A
dSPACE and computer real-time system is used to ac-
quire the different signals and to implement the estimator
and the controller. The piezoelectric cantilever actuator
is based on 36 piezoelectric layers glued themselves which
permit to work at low input voltage. This cantilever is
controlled by two inputs Uy and Uz each one limited to
±10 volts. One extremity of the cantilever is clamped
while the other can bend in the 2D plane (~δ) according
to the input ~U , as depicted on Fig.3 and such that:

~δ =

[
δy
δz

]
~U =

[
Uy
Uz

]
(1)

The scalar input Uy (resp. Uz) generates a displacement
δy along axis y (resp. δz). However, unwanted displace-
ment Z (resp. Y ) due to the coupling is also observed.
The behavior of the cantilever’s displacement, yielded by
the input ~U , features couplings, hysteresis and creep [8].

The set of sensors used to perform the study are:

i) Two external laser sensors (LC2420 from Keyence)
pointing at the tip of the piezocantilever in order
displacement measurement along the y and z axes
(see Fig. 1-Fig. 3). The Keyence sensors provide the
measurement of ~δ, denoted as ~Lm. They have 10nm
resolution, 100µm to 200µm of precision and more
than 1kHz bandwidth.

ii) Two hall-effect (HE) sensors (Micronas HAL401)
embedded in the piezoelectric cantilever are used to
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magnetic sensors.

Fig. 2. Magnetic-based sensing system elements: piezoelectric can-
tilever actuator, hall-effect sensors (dimension: 4.5x2.5x1.2 mm3)
and magnet (dimension:1x1x1 mm3 )
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Fig. 3. Y-Z displacement of the piezoelectric actuator (dimension:
25x1x1 mm3).
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Fig. 4. Open loop response of the cantilever to a circular input U
of frequency 0.1 Hz.

acquire the magnetic field. Such sensors are orthog-
onally arranged in order to measure the magnetic
field vector ~Bm arising from the 2D displacement
of a magnet attached to the piezocantilever’s tip
(Fig. 2). The distance between this magnet and the
HE sensors is therefore an image of the actuator’s de-

flections. An estimated displacement ~̂δ is computed
through an analytic function f( ~Bm), described in
section III, such that:

δ̂ =

[
δ̂y
δ̂z

]
= f(Bm) with ~Bm =

[
By
Bz

]
(2)

The measurement of ~Lm and ~Bm are simultaneously
obtained by a dSpace DS1005 acquisition system. The
measurements performed by the Keyence sensors will be
considered as reference measurements, which means that
they are supposed to be the representation of the actual
piezocantilever deflections, called position or displace-
ment in this paper. This assumption leads to:

~Lm = ~δ (3)

The characterization in open-loop of the piezoelectric
actuator is shown in Fig. 4 and in Fig. 5. The charac-
terization consists in applying a circular (Uy, Uz) inputs
(using sinusoidal and cosinusoidal signals) of frequency
equal to 0.1Hz, corresponding to the blue solid-line in
Fig. 4, while the black dot-line of Fig. 4 corresponds
to the actual actuator displacement. One can notice the
influence of the nonlinearities (hysteresis and creep) and
the couplings arising from the simultaneous motion of the
cantilever. Fig. 5 shows that magnetic field ~Bm, result-
ing from the actuator’s motion, follows a proportional
behavior.
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Fig. 5. Response Bm of the hall sensors to a circular input U of
frequency 0.1 Hz.

III. Estimation of the Piezocantilever’s
Displacements from Magnetic Field

The magnetic field ~Bm measured by the HE sensors is
a function of the cantilever position ~δ:

~Bm = f ′(~δ) (4)

This can be written as a system of two equations:

By = g(δy, δz)

Bz = h(δy, δz)
(5)

where g(δy, δz) and h(δy, δz) are functions described
later. In [30] and [29], Bancel and Ravaud propose a
three dimensional analytical expression to compute the
magnetic field ~B generated by a magnet. Such method
provides an accurate estimation of ~B but the main
drawback is that the expressions can not be analytically
inverted. In our case, in order to retrieve the position of
the magnet, the equations system Equ.5 is inverted such
that:

δ̂y = g′(By, Bz)

δ̂z = h′(By, Bz)
(6)

In order to simplify the analytic inversion, it is convenient
to use simplified expressions for g(δy, δz) and h(δy, δz).
We propose the following expressions:

By(δy, δz) = Aδy +Bδz + Cδyδz +D

Bz(δy, δz) = Eδy + Fδz +Gδyδz +H
(7)

where A, B, . . . ,H are constant scalars to be numerically
calculated during the calibration process of the HE sen-
sors described in the next section. The inverted system
giving the cantiveler position knowing the magnetic field
measured by the HE sensors is:

δ̂y(By, Bz) = α1

C
√
α2+α3

− B
C

δ̂z(By, Bz) =
√
α4+α5

2(B.G−C.F )

(8)



with

α1=B
2.E+C(B.Bz−2By.F−B.H+2D.F )

−B(Bz.C−C.H− 2A.B.G
C +A.F+B.E−By.G+D.G)

−A.B.F+B.By.G−B.D.G

α2=(Bz.C−A.F+B.E−By.G−C.H+D.G)2

−(4B.G−4C.F ).(A.Bz−By.E−A.H+D.E)

α3=−Bz.C
2+C2.H+2A.B.G−A.C.F−B.C.E+By.C.G−C.D.G

and

α4=(Bz.C−A.F+B.E−By.G−C.H+D.G)2

−4(B.G−C.F )(A.Bz−By.E−A.H+D.E)

α5=−Bz.C+A.F−B.E+By.G+C.H−D.G

A. Calibration of the Magnetic Sensor

The system described by Equ.8 requires a prior calibra-
tion before implementation. The calibration process con-
sists in determining the scalar coefficients A, B, . . . ,H.
The input is defined so that the cantilever’s position
follows a parametrized coordinates pattern covering the
entire working space (Fig. 7). The frequency of the refer-
ence coordinates is low in order to avoid dynamic errors
in the calibration. Then, the experimental displacement
data δy, δz, By and Bz are acquired using the Keyence
laser sensors and the HE sensors. The mean value of a 20
data set is computed for coordinate point of the pattern
reducing the measurement noise in δy, δz, By and Bz.
In order to obtain the function relating magnetic field
and position it is applied a nonlinear least-squares curve
fitting using the equations system Equ. 7 and the actual
measured magnetic field. Fig. 6 shows the magnetic field
from the identified parameters and Equ. 7 compared with
its experimental measurement. This validates the calibra-
tion of the magnetic sensors. Having the parameters of
Equ. 7, the inverse model (estimator) described by Equ.8
is yielded. Hence, the estimate displacements δ̂y and δ̂z
are now available.
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Fig. 6. Analytical estimation of the measured magnetic field Bm

on the entire working space of the cantilever.
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Fig. 7. Parametrized motion pattern to calibrate/estimate the
cantilever displacement based on the magnetic field Bm throughout
the entire working space.

IV. H∞-based Control of the Piezo-cantilever

In this section, we use the estimate measurement δ̂y
and δ̂z in a feedback control application. The H∞ control
technique is used for that. This permits to maintain the
stability of the actuator and to improve its performances
although the presence of the couplings and the nonlinear-
ities (hysteresis and creep). The hysteresis nonlinearity
yields uncertainties on the approximate linear model
while the creep nonlinearity and the couplings can be
considered as disturbances (see for instance [31]).

A. Model of the 2-DOF actuator

Assuming that the output displacements of the actua-
tor is now available (thanks to the magnetic sensors), the
2-DOF piezoelectric actuator behavior can be described
as follows [31]:

δy = kyDy(s)Uy + by = Gy(s)Uy + by

δz = kzDz(s)Uz + bz = Gz(s)Uz + bz
(9)

where ki is the static gain, Di(s) (such as Di(s = 0) =
1) is the dynamics and bi is the disturbance, such that i ∈
{y, z}. Due to the hysteresis, the gain ki (decribed in µm)
is subjected to uncertainties. The disturbance bi includes
the creep, the couplings and a part of the hysteresis also.
More details on their characterization can be found in
[31]. The identification shows that:

Gy(s) =

−0.4329(s− 6863)(s− 30)(s2 + 1.19s+ 4.96× 107)

(s+ 2913)(s+ 27)(s2 + 457s+ 1.5× 107)

Gz(s) =

1.78(s+ 6838)(s+ 39)(s2 − 3304s+ 2.17× 107)

(s+ 1063)(s+ 35)(s2 + 92s+ 1.5× 107)
(10)



B. Standard H∞ robust control

According to the model in Equ.9, we have two linear
models each one with an with external disturbance.
In this section, we calculate two controllers Cy(s) and
Cz(s) for these two systems based on the standard
H∞ technique. With this technique, it is possible to a
priori account these disturbances such that performances
will still be maintained in their presence (performances
robustness). The calculation of the two controllers is done
with the same way. Hence, to ease the reading, let us
denote C(s) any of the controllers Cy(s) and Cz(s) and
G(s) = kD(s)U any of the systems Gy(s) and Gz(s).
Fig. 8 pictures the block diagram of the closed-loop in
which δr indicates the desired displacement.

1) Definition of the Specifications: The following spec-
ifications will be used for the calculation of the controller.

• Tracking performances specifications:
For any of the displacements δy and δz, i.e. for δ of
Fig. 8, we impose the following requirements:

– a settling time no more than 30ms,
– zero overshoot,
– and a statical error less than 1%.

• Disturbance rejection:
It is wanted that the maximal error due to the
disturbance b remain less than 2%.

• Command moderation:
Finally, we also introduce a limitation of the input
control U (i.e. Uy and Uz) such that it does not
exceed ±10V for the operating range of δr. This
operating range is set equal to ±35µm for the Y-
axis and ±25µm for the Z-axis. In fact, these values
are taken from Fig. 4 which provided the output
displacements when applying inputs of ±10V .

2) Standard form and standard H∞ problem: From the
above specifications, three weighting functions denoted
W1, W2 and W3 are systematically introduced: the first
one is intended to weight the error signal ε(s) in order
to account the tracking performances, the second is to
account the command moderation and the third one is to
weight the input disturbance signal ~b in order to account
its rejection specifications.

Fig. 9 pictures the corresponding weighted closed-loop
in which O1 is the weighted output error signal and O2

stands for the weighted control output, while I is the
new disturbance accounting the weighting function. From
this scheme, the standard scheme used for the controller
synthesis is derived as depicted on Fig. 10. It consists of

U 
G(s) + 

b 

δ 
C(s) δ 

r ε 

Piezocantilever 

Fig. 8. The closed-loop system.

the interconnection between an augmented system P and
the controller C(s) to be synthesized. The input of the
interconnection are composed of the exogenous signals
δr and I, while the output is composed of the weighted
signals O1 and O2 .

The standard H∞ problem consists in finding an op-
timal value γ > 0 and the controller C(s) stabilizing the
interconnection in Fig. 10 and guaranteeing the following
inequality:

‖Fl (P(s), C(s))‖∞ < γ (11)

where Fl (Pη(s), Cη(s)) is the lower linear fractionnar
transformation between P(s) andC(s) defined here as
follows: (

O1

O2

)
= Fl (P(s), C(s))

(
δr

I

)
(12)

From Fig. 9, we have:

O1 = W1Sδ
r −W1SW3I

O2 = W2Cδ
r −W2W3SCI

(13)

where Sη = (I +GC)
−1

is the sensitivity function.
Using (Inequa. 11) and (Equ. 13), the standard H∞

problem becomes into finding C(s) and an optimal value
of γ such that: 

‖W1S‖∞ < γ
‖W1W3S‖∞ < γ
‖W2SC‖∞ < γ
‖W3W2SC‖∞ < γ

(14)

which is satisfied if we find a controller ensuring the
following inequalities:

|S| = σ̄S < γ
∣∣∣ 1
W1

∣∣∣
|S| = σ̄S < γ

∣∣∣ 1
W1W3

∣∣∣
|SC| = σ̄SC < γ

∣∣∣ 1
W2

∣∣∣
|SC| = σ̄SC < γ

∣∣∣ 1
W2W3

∣∣∣
(15)

where σ̄S and σ̄SC are the upper singular values of
S and of SC respectively. To solve the problem in
(Equ. 15), we use the Glover-Doyle algorithm which is
based on the Riccati equations [27][28]. The transfers
1
W1

, 1
W1W3

and 1
W2

are called gabarits or bounds and

U 
G(s) + 

b 
δ 

C(s) δ 
r 

ε 
Piezocantilever 

W1 W2 W3 

O1 O2 I 

Fig. 9. Weighted closed loop system.



U 
C(s) 

δ r 

ε 

I 

P 

O1 

O2 

Fig. 10. The standard scheme showing exogenous inputs/outputs.

are calculated from the specifications in Section. IV-B as
presented in the next subsection.

3) Derivation of the weighting functions: To obtain
the weighting function 1

W1(s)
, the specifications of track-

ing performances are used. To account the statical error
εs, the settling time tr and the no-overshoot transient
part, we use the weighting function as follows:

1

W1
=
Kdts+ 3

εst

s+ 3
trt

(16)

where trt = 30ms, εst = 0.01 and kdt = 1. Concerning
the gabarit 1

W1W3
, the disturbances rejection specifica-

tions are used. We use following gabarit for that:

1

W1W3
=
Kdbs+ 3

εsb

s+ 3
trb

(17)

where trb = 10ms, εsb = 0.02 and kdb = 1. Finally, the
garabit corresponding to control moderation is written
as

1

W2
=
δmax
Umax

(18)

where Umax = 10V , and δmax = 35µm for Y-axis and
δmax = 20µm for the Z-axis.

C. Experimental Results

The controllers Cy(s) and Cz(s) have been calculated.
We obtained controllers order equal to 7. They have been
implemented in Matlab-Simulink. A circular reference
input has been applied to the closed-loop in order to
check its efficiency to track complex trajectory at slow
frequencies. Figures Fig. 11 and Fig. 12 depict the results
obtained with a radius of 25µm, and a frequency of 0.1Hz
and 1Hz respectively. The figures show the reference
to be tracked, the outputs from the magnetic sensors
that are used for the feedback, and the actual outputs
measured by the optical sensors. As we can see, the
measurements from the used magnetic sensors well track
the actual displacements. Furthermore, the closed-loop
conveniently tracks the trajectory which demonstrates
that the magnetic sensors can be successfully used for
feedback applications. It is implicit that position reg-
ulation control is successfully assured. The experimen-
tal results demonstrate the viability of these proposed
magnetic-based measuring sensors to deal with motion
control of the 2-DOF piezocantilever.

V. CONCLUSION

The present paper has addressed the position control
problem for a 2-DOF piezoelectric actuator using an
alternative position sensing approach sensors based on
magnetic field. To deal with such problem, we have imple-
mented an embedded module using low-cost Hall-effect
sensors and a magnet mounted on the actuator’s tip. It is
presented in detail the estimation-calibration process to
obtain the position of the cantilever using the magnetic
field row data. A H∞ control algorithm is designed to
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Fig. 11. Performance of cantiliver position control while tracking
a circular reference at 0.1 Hz
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overcome the non-linearities (creep, hysteresis and cou-
plings) arising from the 2D motion of the piezocantilever.
The proposed sensing approach results more attractive
in terms of mechanical complexity in comparison with
current position measurement techniques traduced in
bulky and expensive sensors. The experimental results
with closed-loop control of the actuator demonstrated
the interest of the magnetic sensors in feedback applica-
tions.

ACKNOWLEDGMENT

This work was supported by the national ANR-
Emergence MYMESYS-project (ANR-11-EMMA-006:
High Performances Embedded Measurement Systems
for multiDegrees of Freedom Microsystems), the CNRS-
project MiM-HaC and the Equipex ROBOTEX project
(contract ”ANR-10-EQPX-44-01”).

References

[1] F. Bancel and G. Lemarquand, ”Three-dimensional analyti-
cal optimization of permanent magnets alternated structure,”
Magnetics, IEEE Trans on, vol. 34, no. 1, pp. 242-247, 1998.

[2] R. Ravaud and G. Lemarquand, ”Magnetic field produced by a
parallelepipedic magnet of various and uniform polarization,”
Progress In Electromag. Research, vol. 98, pp. 207-219, 2009.

[3] K. Kuhnen and H. Janocha, ”Inverse feedforwrad controller for
complex hysteretic nonlinearities in smart-materials systems”,
Control of Intelligent System, Vol.29, No3, 2001.

[4] B. Mokaberi and A. A. G. Requicha, ”Compensation of scan-
ner creep and hysteresis for AFM nanomanipulation”, IEEE
Transactions on Automation Science and Engineering, Vol.5,
No2, pp.197-208, 2008.

[5] H. Jung, J.Y. Shim and D. Gweon, ”New open-loop actuating
method of piezoelectric actuators for removing hysteresis and
creep”, Review of Scientific Instr, 71 (9), pp.3436-3440, 2000.

[6] D. Croft, G. Shed and S. Devasia, ”Creep, hysteresis and
vibration compensation for piezoactuators: atomic force mi-
croscopy application”, ASME Journal of Dynamic Systems,
Measurement and Control, 2001.

[7] Micky Rakotondrabe, ’Bouc-Wen modeling and inverse mul-
tiplicative structure to compensate hysteresis nonlinearity in
piezoelectric actuators’, IEEE Trans on Autom Science and
Engin, Vol.8(2), pp.428-431, April 2011.

[8] M. Rakotondrabe, C. Clevy, and P. Lutz, “Complete open
loop control of hysteretic, creeped, and oscillating piezoelectric
cantilevers,” IEEE Transactions on Automation Science and
Engineering, vol. 7, no. 3, pp. 440-450, 2010.

[9] M. Al Janaideh and P. Krejč́ı, ”Inverse rate-dependent
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