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INTRODUCTION 
 
As realized early on [1] [2], the zero-field Fe3+-doped-sapphire maser variant of the whispering-gallery-mode cryogenic 
sapphire oscillator (CSO) exhibits several alluring features: Its output is many orders of magnitude brighter than that of 
an active hydrogen maser and thus far less degraded by spontaneous-emission (Schawlow-Townes) and/or receiving-
amplifier noise. Its oscillator loop is confined to a piece of mono-crystalline rock bolted into a metal can. Its quiet 
amplification combined with high resonator Q provide the ingredients for exceptionally low phase noise [3]. We here 
concentrate on novelties addressing the fundamental conundrums and technical challenges that impede progress: 
 
(A) Roasting: The “mase-ability” of sapphire depends significantly on the chemical conditions under which it is grown 
and heat-treated. Beyond merely confirming previous work [4], we provide some fresh details and nuances.   
 
(B) Simplification: This paper obviates the need for a Ka-band synthesizer: it describes how a 31.3 GHz loop oscillator, 
operating on the preferred WG pump mode, incorporating Pound locking, was built from low-cost components.  
 
(C) “Dark Matter”: A Siegman-level [5] analysis of the experimental data determines the substitutional concentration 
of Fe3+ in HEMEX to be less than a part per billion prior to roasting and up to a few hundred ppb afterwards [4]. 
Chemical assays, using different techniques (incl. glow discharge mass spectra spectroscopy and neutron activation 
analysis) consistently indicate, however, that HEMEX contains iron at concentrations of a few parts per million. 
Drawing from several forgotten-about/under-appreciated papers, this substantial discrepancy is addressed. 
 
(D) Excitons: Towards providing a new means of controlling the Fe3+:sapph. system, a cryogenic sapphire ring was 
illuminated, whilst masing, with UV light at wavelengths corresponding to known electronic and charge-transfer (thus 
valence-altering) transitions. Preliminary experiments are reported. 
 
SAPPHIRE ROASTING TRIALS 
 
In contrast to Czochralski growth, the 2050°C graphite heaters within a HEM growth furnace [6] produce a reducing 
atmosphere that induces oxygen vacancies and lowers the valence of ionic impurities. Roasting, i.e. annealing at high 
temperature in air, oxidizes Fe2+ ions inside this sapphire (back) to Fe3+, though it is hypothesized here that the complete 
chemistry, as it affects ESR strengths, is more complicated than this process alone: the concentration and/or valencies of 
(i) defects (specifically F centers), (ii) individual impurities (e.g., Ti, Mo), potentially connected to Fe2+/Fe3+ through 
charge-compensation, and (iii)  Fe3+:Fe3+ clusters, amid a zoo of other combinations, will also be modified [7, 8]. 
 

Fig. 1: Lenton chamber furnance for sapphire annealing 
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Two HEMEX sapphire resonators, viz. Léonard and Basile (see Table 1), were received from FEMTO-ST. It was 
noticed that both contained optical striae. On mounting into a copper can of standard design, bolted directly to the 
second stage of a Cryomech PT405 pulse-tube cooler, both supported a WGH17 doublet near 12.03 GHz, with Qs of 
around 60 million at 3 K, exhibiting slight bistabilities. On pumping on all candidate WG modes near 31.3 GHz with a 
Wiltron 6742B synthesizer boosted by an Agilent 83050A [2-50 GHz, 100mW] amplifier, neither sapphire ring could 
be gotten to mase. Both were subsequently subjected to roasting.  
 
This was accomplished with a Lenton chamber furnace [9]; 200×200×200 mm sample space, maximum operating 
temperature 1700° C; MoSi2 heating elements; programmable Eurotherm controller with Pt6Rh/Pt30Rh (type B) 
thermocouple.  Each sapphire ring was cleaned (incl. soak in Piranha bath then DI rinse) and placed onto a 10-mm 
diameter alumina pedestal inside the chamber; a 100-mm diameter alumina beaker was thereupon placed over the ring 
to protect the latter from debris shedded by the furnace’s liner and heaters. After roasting, Léonard contained a feint, 
internal milky “cloud” near its cylindrical surface, presumably oxidized impurities. Roasting did not noticeably alter the 
Q of either sapphire ring. Both mased on driving (down to 0 dBm) a variety of WGXX  pump modes near 31.3 GHz. 
Léonard exhibited bistable masing (dependent on coupling), the two modes of its WGH17 doublet separated by 23 kHz.   
 

Table 1 Ø 
[mm] 

height 
[mm] 

annealing schedule (pump) WGXX
freq. [GHz] 

signal (WGH17) 
freq. [GHz] 

mode line- 
width [Hz] 

maser  
output power

Léonard 50.017 30.018 16 hour @ 1600° C; 
200° C/hr ramp up/down. 

31.312570 12.0281059  
12.0281082 

199 
241  

-47 dBm 
-60 dBm 

Basile 50.024 30.032 1 hour @ 1600° C (then broke) 
200° C ramp up; passive cool. 

31.340330 12.0267126 ~200 -50 dBm 

 
DC-POWERED Fe3+:sapph. MASER OSCILLATOR 
 
Fig. 3 and Table 2 (+ Appendix) provide a detailed anatomy and “bill of materials”. The 31.3 GHz pump loop included 
many SMA-connectorized components (printed blue in Table 2), specified for operation over single frequency bands 
below 18 GHz. All components were screened against low-loss/spurions near 31.3 GHz prior to inclusion. The pump 
loop was powered by five Hittite MMIC amplifiers consuming 6.5 Watts (1.3 A at 5 V) in total. 
 
Mode selector: This comprised a 6-pole (equi-ripple) 50-MHz bandwidth prefilter, (n) in Fig. 3 [retuned to 31.34 GHz; 
I.L. 3 dB] in series with a 3-pole, 17-MHz bandwidth filter (m) made from a 300-mm length of WR-28 waveguide; see 
Fig. 2. The latter was designed using [10], section 12.11; four inserted irises made from 0.2mm copper sheet, with ~2.5 
mm (outer pair) and ~2.0 mm (inner pair) dia. holes, fixed with Epo-Tek H20E, formed its 3 λ/2 : 35 λ/2 : 3 λ/2 cavities. 
 

 

 
  

 
 

 
Fig. 2: WGxx mode-selection filter; top right image shows it mounted in situ. 

 
Voltage-controlled phase shifter: On adjusting the manually-adjustable phase shifter (g), together with the bias 
voltages to each v.-c. attenuator (f), the carriers in each arm could be brought into balanced quadrature; the circuit 
provided 12° phase swing per volt [applied to its control circuit (y)], with ~0.3 dB/V residual a.m.; the I.L. was ~13 dB. 
The applied IF modulation @ 45.19 kHz gave symmetrical sidebands –15 dB down from the (recombined) carrier. 



 
Fig. 3: Anatomy of Pound-Locked-Loop-Oscillator-Pumped Fe3+:Sapph. Maser 



 Functional 
description 

Make and model  
(+ supplier, if obscure)  

Pertinent specifications and/or details (at relevant 
carrier frequency) 

 Pump loop  fP = ~31.3 GHz 
a/z loop/stub probe lab.-crafted from RG-405U semi-rigid  
b cryo coax cable RG178B/U, ~60cm in length specified 1.4 dB loss per m @ 1 GHz, but … 
c 2-way power divider ET Industries (Boonton NJ, USA) 

Model D-240-2; from SS
2-40 GHz; max I.L. 2.4 dB (specified); 
isolation 15 dB (2-way stripline); APC 3.5 connectors 

d wide-band driver 
amplifier 

Hittite HMC635LC4 mounted on eval board;  specified 18.5 dB gain; power 1.4 W (280 mA @ 5 V); 
noise figure 6 dB 

 voltage-controlled 
phase shifter: 

 overall insertion loss = -13.5 dB; phase swing from –1.0 V 
to +1.0 V = 24.56 degrees. 

e 2-way power divider narda Model 4316.2 12-18 GHz nominal; but measured IL @ fP (excluding the 
3dB of and ideal divider) ~1.5 dB  

f voltage-controlled 
attenuator  

M/A COM Ltd; ML6550-N117-12; SPEC NO: 
1085-06328; from SS

pair; one for each arm; 2-18 GHz; negative voltage 
operation; attenuation: 0 to -30 db 

   “I” channel: 
h fixed phase shift looped ~8 cm length of RG-402  
    “Q” channel 
g manually adjustable 

phase shifter 
Spectrum C3117, LS-0212-1121; from SS specification: 0-12 GHz operation; VSWR: 1.25 : 1 max; 

insertion loss: 0.4 db max; phase shift: 230° min; turns: 16 
i 2-way power divider narda, Model 4315.2 specified by manufacturer for 8.0-12.4 GHz operation only; 

but IL = -1.2 dB @ fP measured. 

j manually adjustable 
phase shifter 

MIDISCO MDC1089-1; 
http://www.microwavedistributors.com/; 
 

0-18 GHz; phase adjustment span = 10˚ × freq. (GHz); 
0.636 ˚  × freq (GHz) per revolution; max length = 2 1/2 
inches; measured I.L.  = 0.5 dB @ fP  

k semi-rigid coax cable standard RG 402 as above but ~20 cm long  
l male SMA to WR-28 

waveguide adapter 
MDL (Microwave Development Laboratories) 190 
ELECT; MFR-01456 28AC39; from TP 

http://www.mdllab.com/; nearest-equivalent current MDL 
part: 28AC226. 

n retuned WR-28 
waveguide BPF 

LORCH (http://www.lorch.com/) 
6WR28-31025/R50C; from TN 

6-cavities (poles) in WR-28 straight, 79-mm long; 
originally centred on 31.025 GHz, 50 MHz bandwidth,  

m “mode-picker” 
WR-28 filter 

modified 12" Flann Microwave WR28 waveguide 
section; from TP 

see text for details; centre frequency  31.33522815 GHz; 
insertion loss 11.3 dB; -3 dB bandwidth 17.4 MHz. 

o medium power amp. Hittite HMC499LC mounted on eval board; 13 dB gain @ fP

p 3 dB hybrid MA/COM FSC 96341, PN 2032-6374-00,  6.5–18.0 GHz; ISO port terminated by 50-Ω load 
 Pound Servo  fIF = 45,189.5 kHz; “base band”= 0-10 kHz 
q power detector Agilent 8474E; negative response, 0.01-50 GHz 

response; 2.4-mm input connector; 
± 0.4 dB up to 26.5 GHz; 
sensitivity > 0.4 mV/μW to 40 GHz 

r low pass filter Mini-Circuits BLP 10.7  
s ultra-low-noise 

rf amplifier 
lab constructed, based Plessey SL561; powered by 
YUASA NP17-12I rechargeable 12 V battery 

0.8 nV/√Hz input voltage noise; bandwidth 100 Hz to 6 
MHz.; 40 dB gain 

t Balun Mini-Circuits FTB1-1, BNC connectorized 0.2-500 MHz 
u double-balanced mixer Hatfield Instruments (Plymouth England) 

Modulator Type 1754 
freq. range: 0.01-100 MHz 

v IF frequency generator Novotech (Seattle) Model DDS3 45.189.47 kHz; specified amplitude 0.7 Vpp into 50 ohms 
(or 0.88 dBm); 0 dBm measured. 

w servo loop filter = 
integrating amplifier  

lab.-constructed; incorporating input-bias-voltage-
nulled Burr-Brown OPA627.  

input and output monitored with oscilloscope 

x passive LC bias-tee lab.-constructed. cross-over ~10 kHz 
y dual dc. bias + 

differential driver  
lab.-constructed circuit;  based around two OP177 
op-amps 

independently adjustable negative bias voltages. 

 Maser signal chain  fM = ~12.027 GHz 
α armoured coax cable Midwest Microwave CSY-SSSM-52-002 MA;  2m long 
β spectrum analyser Anritsu MS2668C 9 kHz to 40 GHz coverage; clocked by 10-MHz maser ref. 
γ Isolator Aerocomm (Bangkok, Thailand) J80.124  
δ bandpass filter Microphase R4815, bandpass filter, centre 

frequency = 12.0 GHz, BW = 140 MHz; from AX 
specified -0.8145 dB @ 11.94 GHz; -0.9051 dB @ 12.08 
GHz; measured -0.2dB @ 12 GHz; -65 dB @ 31.3 GHz 

ε low-noise amp Herotek A1242-330 35 dB gain; noise figure: 3.0 dB;12VDC, 350mA 
ζ 3dB power splitter Advance Technical Materials, Inc. (Patchogue, 

NY, USA) ATM 9216  
8.0-12.4 GHz nominal 

ω spectrum analyzer HP 8566B  2-22 GHz coverage 
θ Double-bal. mixer Robinson Labs RL-7030-A-1 12-18 GHz nominal 
τ active hydrogen maser 

freq. reference 
Sigma Tau MHM-2010; via two cascaded Spectral 
Dynamics, Inc. HPDA-15RM-C amplifiers 

10 MHz output; along assorted lengths of Andrews Heliax, 
Times Microwave LMR-400 and RG213 cables around lab. 

ρ 4-way passive splitter Mini-Circuits FTB-1-1 balun into ZSC-4-1  ~10 dBm from each ZSC-4-1 output port. 
η Synthesizer Anritsu MG3692B signal generator clocked by 10-MHz maser ref. 
κ rf amplifier HP 461A Mains powered; set to 40 dB gain 
λ frequency counter Agilent 53132A clocked by 10-MHz maser ref. 

Table 2 
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Performance: On applying current to its amplifiers, the pump loop would reliably oscillate (and Pound-lock), provided 
the resonator’s temperature lay below 20 K. On switching off the cooler, masing would persist up to 29.5 K. The Pound 
detector diode (q) lay outside of the cryostat. As inferred from a germanium resistance sensor attached to the resonator’s 
can (read with a Lakeshore 340 temperature controller), the resonator’s temperature “yoyoed” with an amplitude of ~0.1 
K at the cooler’s cycle frequency (~1.4 Hz); a corresponding yoyoing was observed on the Pound error signal.  Even 
when Basile was stationed at its frequency turnover temperature (8.72 K; curvature of –11.85 Hz/K2) the affects of the 
cryocooler’s thermal/mechanical vibrations still dominated; the measured Allan deviation at 10s was around 10-13. 
 
BROADENING MECHANISMS  
 
Qualitatively, the observed weakness of the Fe3+:sapph.’s ESRs is due to spectral (as well as spatial) hole burning. The 
rational design of any device based on them requires that the hole burning’s dependence on variables within 
experimental control be quantified. This boils down to determining the values of various time constants. Where data 
specific to Fe3+:sapph is lacking, estimates can be inferred from studies on (dilute) ruby; see Table 3.  
 
Inhomogenous (or rather “heterogenous”) broadening T2*: In the limit of low 
doping concentrations, Fe3+:sapph. consistently exhibits total linewidths of a few tens 
of MHz, characterized by a time constant T2* of around 10 ns; crystal quality 
(Verneuil, Czochralski, HEM, …) makes little difference.  This intrinsic broadening 
is due to the hyperfine interaction between each Fe3+ ion and the (magnetic dipole’s 
of the) 27Al nuclei that surround it. Considering just the first 13 nearest nuclei, 
Wenzel predicted its magnitude of this broadening quite accurately [11]. Mössbauer 
spectroscopy (on 57Fe3+-dopped sapphire) [12] subsequently clarified the earlier 
ESR-measurements [13]. ENDOR experiments [14, 15] motivated the concept of a 
“frozen core” of nuclei surrounding each Fe3+/Cr3+ ion. 

Fig. 4 
Spin-lattice relaxation T1: This parameter is also well understood [16]; it does depend on crystal quality (see Table 3.) 
 
Spin-spin (tranverse) relaxation T2: One problem, on the experimental side, is that most of the (surprisingly limited) 
relevant experimental data comes from measurements on ruby at >10 ppm concentrations. A compounding problem, on 
the theoretical side, is that Cr3+:sapph at high (saturating) drive powers is known to violate Bloch theory -as based on 
the value of T2 obtained from spin-echo ESR/ENDOR/PENDOR measurements. Even the exact shape of the 
homogenous broadening is still not wholly clear [17]. Acknowledging these caveats and persisting mysteries, we limit 
our sights to extracting a “ball-park” magnitude (for both the pump and signal transitions). The available literature 
indicates that, at least down to concentration levels of a few tens of ppm, the homogenous broadening of the Cr3+:sapph. 
ESRs, as quantitified by T2, is still controlled by Cr:Cr electronic spin flip-flops. The value of T2 has been measured 
through a variety of techniques –see Table 3. What is essential to understand here is that T2 is not simply a constant but 
a function of (amongst other parameters) the concentration and the drive power, i.e., intensity-broadening [18] has to be 
included. Though violations have been observed [19], to first, rough-and-ready approximation, the homogenous 
broadening scales proportionally to the square-root of the concentration: 3+Fe2 1/ conc.T ∝ . Within Bloch theory 
(BT), the spreading of an excitation due to intensity broadening is quantified by [18]: 
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where 1 2S Tχ= T  is the degree of saturation, a.k.a. the dimensionless intensity; ( / 2) *Hχ γ σσ=  is the Rabi 

frequency; γ  is the “free spin” ESR field-to-frequency conversion factor (28 GHz per Tesla); σσ ∗ is the (magnitude 
of the) dipole strength for the transition concerned; H is the magnetic field amplitude. 
 
Beyond Bloch theory, the phenomenon of spin diffusion [20] needs to be included (as through the Yamanoi-Eberly 
model [21] or similar), but no attempt to chart these depths will be made here. Despite addressing optical hole burning, 
[22] reviews what is known about spin diffusion from ESR measurements. These works study Cr3+:sapph. in setups 
where the homogenous broadening grows less quickly with intensity than what BT predicts.  The spin diffusion here is 
presumed to be driven by flip-flopping of the 27Al nuclei spins, particularly those close-lying ones in the frozen core, 
whose flips can “jolt” the ESR of an individual Cr3+/Fe3+ ion far out of resonance from its pump/single WG mode. Using 

27  27nuclear spin echo in conjunction with pulsed optical excitation of ruby’s R1 line, the dephasing time(s) of the Al : Al 



flip-flops have been measured [22, 23] for both the frozen core and bulk –see Table 3; it is worth noting here that both 
times are smaller than T1, suggesting that a pumped Fe3+:sapph ion will typically diffuse around the whole of the 
heterogenous linewidth before it non-radiatively decays. Needless to say, these measurements and insights are highly 
relevant to predicting the effective fraction of Fe3+:sapph. ions that participate in maser action. 
 
Property Technique Experimental particulars Value Ref. 
inhomog. linewidth =  spectroscopy 

 Fe3+ 1 / π T2* 
X-band ESR 50 ppm Fe3+ 

100-200 ppm
27  ± 5 MHz 
28 MHz 

[24] 
[25] 

 Theoretical eld for Cr3+ (magnetic fi
parallel to C axis) 

10 Gauss 
= 28 MHz 

 

 Mossbauer spectroscopy auss” [12] 800 ppm 57Fe3+ 

 
“9.0 ± 3.0 G
=25 ± 8 MHz. 

T1 X-band ESR saturation-relaxation 0 ppm Fe3+ conc. [26] 
@ ~ 9 GHz 

5 7 +/- 2 ms 

  200 ppm conc. 8 ± 1 ms [25] @ 9-10 GHz
  20 ppm conc. 12 ± 1ms [25] 
 @ 9.27 GHz il residual; Verneu

(vap.-phase) 
20 ms [27] 

T2 echo-ENDOR; @16 and  9.3 GHz by 1.5 μs [28] [28] 0.005-wt% ru
 echo-PENDOR@  693.4 nm (R1 line) 0.005-wt% ruby 3.5 μs [29] [28] 
 free induction decay (FID) of ESR 

spin @ 5.9 GHz  
0.009-wt % ruby 7.5 ± 7 μs [21] 

 1 line @ 0.0034-wt % ruby 15 μs [22] optical hole burning of R
693.6 nm 

√(T1 T2)  bistability   4.6 ± 0.2 μs [30] microwave
T2  of 27Al   the “frozen core” 
 

nuclear spin-echo decay in 1 ms [23] 

  in the bulk 60 μs ibid. 
spin-spin (intraline ptical hole burning by  
cross-) relax. time 

o 0.05 wt% ru 0.5 ms [31] 

Cr-Cr spin-flip time many and various  1-50 μs Table 1 in [23] 
(reson. cross relax.) 
spectral diff. time Td   14 μs [22, 32] 

Table 3: Key design parame r for Fe3+:sapphire ma tion 
 

 final insight comes from the observation of bi-mode masering: WG modes separated by 8 MHz coexist independently 

istilling Table 3 and the above insights into ball-park figures:  Given the low concentration levels of Fe3+ ions in 

te ser ac

A
[4], whereas modes stationed 10 kHz apart compete (for the same population inversion) [33] as they brighten. This 
suggests that the effective homogenous linewidth lies below 10 kHz at low powers and somewhere between 10 kHz and 
8 MHz at high powers. 
 
D
HEMEX, T2 at low-power should be several tens of μs (say ~80 μs), corresponding to a homogenous linewidth of a few 
kHz (say ~4 kHz).  With such a narrow homogenous linewidth, spin diffusion seems likely to be significant: the time, 
Td, an Fe3+:sapph ion typically stays within the homogenously broadened line risks being the same order of magnitude, 
if not shorter, than T2 itself. At finite power, the key parameter is the Rabi frequency, χ , as given by (1) above, where 
the magnetic field amplitude can be estimated through 0 0 effH P/( )Q f Vμ≈ , where PQ , 0f  and V  are the 
electromagnetic (co-circulating) power,  frequency and effe G mode in est n.  Com ed to an 
X-band Ramsey cavity in a Cs clock, the extremely high Qs and smaller volumes of WG modes in cryogenic sapphire 
rings stand to elevate χ well above the tens-of-kHz Rabi frequencies encountered with the former. Getting more 
quantitative (for the pump transition): assuming an applied power of 1 mW, critical coupling, an effective mode volume 
of 5 cm

eff

ctive volume of the W  qu io par

3, a (loaded) Q of 1 billion; and noting that the transition amplitude of the (level-crossing thus somewhat 
forbidden) pump transition is only 0.05 in free spin units [26] [34], one arrives at an estimated Rabi frequency of around 
1 THz; in comparison with any reasonable estimate of 1/√(T1 T2), this puts the saturation S >>1 corresponding to the 
whole inhomogenously broadened line being made accessible; Fig 6.3 and its surrounds discussion in [18] clarify these 
remarks. The extent to which spin-diffusion will cripple the power broadening [21], remains to be quantified.  
  



ULTRAVIOLET SENSITIVITY 
 
The purpose of these experiments was to see whether either the number density or paramagnetic state of Fe3+:sapph. 
could be affected by light (at lowish intensities). Many workers with interests ranging from mineralogy to gravitational 
wave detection have measured optical absorption spectra of sapphire specimens [35] [36]. However, because optical 
transitions from Fe3+:sapph.’s electronic 6S ground state are doubly forbidden, they are often masked by stronger 
absorptions associated with other colour centres; Refs. [37] and [38] do nevertheless make explicit identifications. In 
particular, they observe a relatively strong and sharp “ b

24T ” absorption line at 387 nm (at 77K). Although, to the best 
of the authors’ understanding, Fe3+:sapph is not expected (at zero applied magnetic field …) to exhibit any sort of 
paramagnetic circular dichroism --as would facilitate state-selective optical pumping, the extreme ease with which 
radiation at this wavelength (or thereabouts) can be generated with an AlN light-emitting diode motivated the shining of 
some of it onto the sapphire ring –just to see what might happen. This was done using a room temperature diode feeding 
a plastic light pipe. See Figs. 2, 5 and Table 4. A diode of the same type was also mounted on the inner wall of the 
copper resonator can –see right image of Fig. 5 immediately below. 
 

  
Fig.5:  385 nm optical excitation  

 
As for the effects of even shorter-wavelength light, Tippins [39] studied the UV absorption spectrum of Fe3+:sapph. 
associated with valence-changing transitions: O═ + Fe3+ → O─ + Fe2+. In particular, he found a broad absorption around 
255 nm associated with adding a spin-down electron to the so-called t2g(π*) molecular anti-bonding orbital. Optically 
stimulating this chemical transition should reduce, temporarily, the density of Fe3+ ions thus the strength of their 
associated ESRs/masing. Again, as luck would have it, the required radiation can easily be gotten from the 254-nm line 
of a mercury vapour lamp. The only challenge comes in conveying it to the cryogenic sapphire ring efficiently. On 
removing the “lid” of the resonator can, this was done with a crystalline quartz window on the cryostat’s AVC and two 
fused-silica convex lenses mounted within the cryostat; see Figs. 2 and 6 and Table 4. 
 

        
Fig 6: UV optical access of masing cryogenic sapphire ring; left: cryogenic lens assembly; right: image of cryogenic 

sapphire ring seen through this assembly (the circular lower and upper edges of the ring can both be seen). 
 
Results. Alas, all negative! The 385 nm LED inside the copper can did not function (no light) when cold. The only 
noticeable effect upon injecting 385 nm radiation via the plastic light pipe was a slow transient shift in the maser 
frequency (taking several seconds to complete) consistent with heating. The optical power at 255 nm shone onto the 
sapphire crystal was estimated to be 1.63 mW (see Table 4 below). This could be turned on and off within a few tens of 
ms with a mechanical shutter. No substantial difference in the maser signal power could be detected when toggling 
between an open and closed shutter. The results of these optical-illumination experiments are, needless to say, pre-
liminary. Using lasers or installing an optical build-up cavity would drive the excitation to t2g(π*) harder; synchronous 



detection would help to detect a weak effect. It is both salutary and intriguing to note that the ESR strengths of 
Cr3+:sapph. (i.e. ruby) were not altered upon irradiating it with sufficient 60Co γ rays to turn it orange in colour [40]. 
 
 Function Make and model  Pertinent specifications and/or details 
 385 nm stimulation:    
A 385nm UV diode Nichia, NCSU034A output centred on 385nm, width ~10nm; 3.8 V applied, 330 mA drawn.  
B Plastic light pipe Mitsubishi “Eska” acrylic 

(PMMA) fibre, 2mm O.D. 
1.2 m long; attenuation @385 nm (extrapolated from measurements > 400 
nm): 700 dB/km; so attenuation through pipe used ≈ 0.84 dB  

 254 nm simulation:   
C 255 nm mercury 

vapour lamp 
UVP Pen-Ray lamp, model 
90-0012-01 (+ 11SC-1)  

housed within ~9 mm dia. aluminium shield with 0.19 ×1.5" window. 

D Quartz window lab. heirloom; orientation 
unknown; 1” dia.; 2mm thick. 

originally fine ground; hand polished against 1-micron “aloxite” held in damp 
cotton cloth, followed by 0.3 micron cerium oxide in same. 

E Fused silica lens 1” diameter, plano-convex, focal 
length 50 mm nominal  

manufacturer unknown; probably Spectrosil. 

F lens tube Thorlabs SM1 series aluminium 
lens tubes of 1” dia. optics 

combination of SM1L05, + SM1L20 + SM1L30 stacked together; mounted 
through hole in first-stage rad-shield 

G Fused silica lens 1” diameter, bi-convex, focal 
length 50 mm nominal  

manufacturer unknown; probably Spectrosil. 

 From http://uvp.com/mercury.html: typical intensity of Pen-Ray lamp (over the 254 nm line) at a distance of 0.75" = 4.5 mW/cm2.  
However, “in the case of mercury lamps, the primary emissions peak at 254nm will decrease steadily with time due to quartz solarization. 
This will yield a net output of approximately 70% after 2,000 hours. The effect will then stabilize for the remainder of the life of the 
lamp.” So make that 3 mW/cm2.  From measured experimental geometry, effective diameter of first silica lens (E) projected onto sphere 
0.75”-radius sphere around from PenRay lamp ≈ 9.525 mm. Transmission losses: ~3.37% reflection loss per surface from three pairs of 
surfaces plus absorption through 2 mm + 6mm + 6mm of silica @ -0.5 % per mm (see http://www.uqgoptics.com/) ; compounding gives 
~24 % loss in total. Thus optical power projected into sapphire ring estimated to be: π  × (0.9535/2)^2 × 3  (1- 24/100) = 1.63 mW  

Table 4 
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 Supplier 
AX Abex (UK) Ltd; www.abex.co.uk; tel: +44 1252 844902; email: sales@abex.co.uk; 

Abex (UK), Warren Close, Hartley Wintney, Hook, Hampshire, RG27 8DS, United Kingdom
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