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Abstract— The paper presents the modeling and control of
a class of multirotor miniature aerial vehicle (MAV) having
an onboard robotic manipulator. These kind of configuration
represents the logical evolution in the MAV development race.
The main goal is to outstrip the current operational profile,
specially in the civilian field, by endowing classical MAV config-
urations with novel capabilities to interact with the surrounding
environment. The equations that describes the dynamic model
of this class of aerial robot, for translation and rotational
motion, are obtained through the Euler-Lagrange formalism.
This energy-based modeling approach allows to obtain the
mechanical couplings between both aerial and manipulation
systems, the aerial and manipulation. In terms of control,
our main goal is to provide a simple-to-implement controller
to perform aerial manipulation tasks using multirotor MAVs.
A task-based control strategy is then proposed to cancel the
couplings in the overall dynamic model (model simplification).
The control law for the aerial system relies on a classical two-
level scheme to fullfil tracking problem. On the other hand,
the motion problem of the manipulation system is addressed
via a switching-based controller. The controller corresponding
stability proofs are presented and the performance of the
control strategy is evaluated at simulation level.

I. INTRODUCTION

The pace of development of Unmanned Aerial Vehicles
(UAV5s) has increased over the last few years, due to the wide
range of military or civilian applications were they could
potentially be deployed. In the military field, applications
such as delivering survival-kits to the troops, mobile commu-
nication link with a ground station for information exchange,
risk evaluation of hostile area, are just a few examples of
drone-based applications. It is well know that growth rate of
MAVs civilian application is not as high as that of its military
counterpart. However, the operational profile offered by
interactive MAVs unveils interesting novel applications, for
instance, recovering mineral samplings in volcanic study, air-
quality cartography/monitoring, placing/recovering sensors
in constrained strategic areas, recovering potential explosive
packages in sensitive facilities. The interactive MAV configu-
ration represent a unique profile endowing manipulator robot
with the 3D mobility of aerial vehicles. The latter allows to
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perform teleoperated/autonomous interactivity within hostile
environments. Whereas this concept is very promising, it also
comes with significant robotic and automation challenges.
Foremost amongst these is the modeling the compound
mechanical system and designing controllers that will work,
in theory and practice, over partial or complete operational
scope of the flying robot and an appropriate and optimized
mechanical design to meet the desired flight performance
requirements.

Recent research activities related to interactive flying
rotorcrafts can be found in the literature: [2|where the
authors have presented the planar model and attitude control
analysis of helicopter equipped with a gripper that is capable
of grasping and transporting loads of different geometries
and sizes. GRASP Research team uses different cooperative
quadrotors fleet configurations to transport corresponding
load geometries by means of gripper and cables [3]. An
alternative UAV configuration featuring a hook aiming at
vision-based delivering and retrieving of cargo, is presented
in [4]. In [5] and [6], the problem of load transportation using
autonomous small size helicopters is addressed. Likewise,
the modeling and control of a variable number of helicopters
transporting a load is presented. Indeed, the proposed con-
troller prevent and compensate load oscillations during flight,
which is demonstrated by real flight load transportation by
three helicopters.

The paper presents the study of a class of a multirotor
MAV evolving in the longitudinal plane and capable of
interacting with the surrounding environment by means of
an onboard 1-DOF manipulator. The paper addresses the
energy-based modeling and control strategy based on a
predefined operational profile (task-based control). From the
mechanical point of view, the actual aerial configuration is
considered as a multi-body mechanical system, encompass-
ing the aerial (MAV) and manipulation (robot manipulator)
systems. Such robotic arm is intended to perform simple
prehension tasks, i.e. pick-and-place of simple-geometry
objects into/from obstructed cavities. It is clear that in-
flight manipulator operations shifts the rotorcraft center of
gravity (cg), this is equivalent to having disturbing torques
in the nominal rotational dynamics of the rotorcraft. For this
reason, the equations of motion based on the Euler-Lagrange
formulation are considered for defining the dynamic model
of the interactive aerial robot, since it allows to obtain
not only the main forces and moments exerted on the
vehicle but also the couplings [7][8]. Likewise, we design
the controller for the interactive aerial robot a function of
two tasks aerial (i) transportation and (2) manipulation, such



approach is meant to simplify the overall dynamic model
and thus the control law synthesis. Since we have defined
a specific operational profile, it provides an a priori idea of
the vehicle’s dynamic behavior during each operational mode
allowing to eliminate and/or neglect associated couplings,
while remaining couplings are considered as disturbances a
thus addressed via a robust control scheme.

The outline of the paper is as follows: section II describing
the problem arising from having a robotic arm onboard of an
miniature vehicle, as well as, is described the translational
and rotational mathematical model of the multi-body aerial
system. The proposed strategy based on two operational
regimes is described in section IV. Numerical simulations
results are presented in section V. Conclusions and perspec-
tives are finally given in Section VI.

II. DYNAMIC MODEL

This section presents the energy-based equations of motion
representing the dynamic behavior of the interactive air
robot while evolving within the longitudinal plane (planar
model), such equations were obtained via the Euler-Lagrange
formulation [10]. Such modeling formalism is useful to
obtain dynamic relationships for coupled mechanical con-
figurations (multi-body vehicle). In [10] we have consid-
ered a generalized rotational model encompassing rotational
dynamics of the rotorcraft and manipulator on a single
vectorial expression, however, in the present paper we split
the equations of motions in two equations sets for aerial and
manipulation systems, respectively. The resulting model is
useful to identify inherent dynamic couplings in the overall
system, which allows to qualify the influence of such terms
aiming at simplifications in the control design. The aerial
robot has onboard an actuated robotic manipulator, equipped
with a simple (open/close) gripper, carrying a cargo, and
hence, its evolution implies additional forces and moments
acting on the aerial robot and on the manipulator as well
(Fig. 2). According to figure (Fig. 2), 8 is the pitch angle,
v is the the manipulator’s angle with respect to (w.r.t.) —es,
while Tjand 75 are the thrust provided by frontal and rear
rotors, respectively.

A. Kinematics

The kinematics of the flying robot comprise two right-
handed reference coordinates systems [9].

o Let (e, ey,e,) defines the fixed inertial coordinates
system F* , whose origin O® located at the earth surface.
For the longitudinal case the vector basis becomes
(e4,0,€;)

o Let (e1,e2,e3) be the body-fixed frame JF°, whose
origin O corresponds to the center of gravity CG of
the quadrotor. For the longitudinal case the vector basis
becomes (e, e3).

e Figure 2 depicts the vehicle rotating clockwise
(righthanded sense) while the manipulator does in the
opposite sense. This rotational displacement is ex-
pressed by the orthogonal transformation matrices R? €
R2%2 and RY € R2*2, where § and v correspond to

Fig. 1. Frames of reference

Fig. 2.

Forces and moments

the quad-rotor’s attitude and manipulator’s joint angle,
respectively.

B. Equations of motion

The equations of motions of the complete system
rotorcraft-manipulator are obtained via the Euler-Lagrange
formulation, for details see ([10]).

(M +m)i —mlcos(d —~)(6 —#)

Uy =
+mlsin(0 — )0 —4)2 (1)
u. = (M+m)i+mlsin(0 —~)(0 — %)

+mlcos(f —v)(0 — )* + (M +m)g

notice that for the translational equation, displacement along
the x—axis is underactuated by the attitude, i.e. u, = 0. The
corresponding equations describing the rotational motion are

ug = (Iy +ml? + I,)0 — (ml? + 1,)3
—mlcos(0 — )& + mesin(0 — )z
+mglsin (60 — )
w, = (I, +ml?)% — (ml? + 1,)0 + ml cos( — 7)i
—mlsin(f —v)z — mglsin (0 — )
2



Let us re-group the previous set of equations with respect
to the (i) aerial and (ii) manipulation subsystems

C. Rotorcraft MAV

The equations modeling the translational and rotational
aerial system are written

(M +m)é = Ug + W(nm4m) + Fe + Fy

Yac 3
4 {Iy9=U9+T9t+T9w+T05 ©)

where £ = (i,%)T represents the 2D velocity of the
drone, U¢ = ROIF® the thrust vector used as control input,
Wnvim) = (0, —(M + m)g)" is the total weight vector,

while _
_( msin(®— )0 —4)?
Fe = < ml COS(Q - 7)(9_ 7 2 > (4)
F, — ( m cos() — ) (0 — %) )
—m{sin(6 — v)(0 — )

correspond to the centripetal and tangential forces aris-
ing from the rotational motion of the manipulator robot.
Concerning the rotational dynamics of aerial system, the
following disturbing torques are identified,

Ty, = mlcos(d — )& —mlsin(d — )z

3

Ty, = —mglsin(0 —7) %)

w

Ty, = (ml?—1,)(0 —7)

where Ty, correspond to the the coupling torque arising
from the combination of the MAV’s translational motion with
manipulator’s mass, Ty, stand for the torque resulting from
the manipulator and Tp,

D. Manipulator Robot

The dynamic equation corresponding to the manipulator
system are given as

Eu o (Iy + mﬁ)(‘? - 9) =U,+T,, +7T,, (6)

it is observed that the manipulator’s dynamics is disturbed
by the following torques

va =
T, =

mglsin (0 — )

—mdcos(0 — )& + mlsin(f — )z )

where T, denotes the torque arising from the weight of the
manipulator while torque T’,, results from the coupling with
translational motion of the MAV.

III. TASK-BASED DYNAMICS

Based on the dynamic models described by (Eqn 3) and
(Eqn 6) described above, it defines an operational profile
intended to simplify the control design of the flying robot
featuring a robotic manipulator. Hence, in order to achieve
such objective, the overall operational task of the multi-body
rotorcraft is partitioned into two regimes: transportation task
and manipulation task (see Fig. 3 ).
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Fig. 3. Overall operational profile of the iMAV showing the loca-
tion/transportation and manipulation phases.

A. Transportation Task

In order to reduce the coupling during translational opera-
tion towards a target zone (manipulation regime), we propose
that the manipulator dynamics tracks the state trajectories
defined by the attitude of the flying robot, i.e. v¥ = 6 and
A = 4. Assuming an effective tracking control implies that
T,, — 0 and T, — mi. Hence, Eqn 6 becomes

SMpans (I, +ml) (5 — ) = U, — mli (8)

Achieving such tracking objective (Eqn 8) results in the ver-
tical position of manipulator for any attitude of the rotorcraft,
simplifying the dynamic model of the aerial system (Eqn 3)
as .

(M +m)¢ = Ue + Warim)

)y : 9
Arrans { Iy = Uy + mli ®

where parasitic forces were neglected, since F. — (0,0)7
and Fy — (=~ 0,0)7.

B. Manipulation Task

Given that the manipulator is meant to evolve for different
reference positions (placing/recovering target objects) within
this regime, and, the rotorcraft has reached the target zone
(..  ~ 2% 2 ~ 2?) near-hovering flight can be assumed
(ie. @ ~ 0 and § ~ 0). Such operational profile leads
to T’m, — Ty and TVé — 0, allowing to rewrite the
manipulator models as

Yum Py + mgz)(’? - 9) =Uy+ 7,

manip

(10)

where 7, is a slow-time varying value assuming small
fluctuations of manipulator’s angular velocity.

On the other hand, the rotorcraft dynamics (Eqn 3) is
reduced to

o (M +m)E=Ue + Wiarim)
e S\ Iyl = Uy + 1,

where Tp, = 0 due to the MAV is in hovering flight, and,
the remaining disturbing terms arising during the transient
v — ¢ are considered as parasitic forces and torques, and
thus neglected for the control design (but included in the
numerical simulation).

(1)



IV. CONTROL DESIGN
A. Rotorcraft: Robust Two-time Scale Control

In this section we present a hierarchical control scheme
considering the well-known time-scale separation between
rotational and translational dynamics [11]. The main goal is
to drive the rotorcraft drone according to the commanded ref-
erence while rejecting coupling disturbances provided by the
evolution of the onboard manipulator. Based on the operation
profile described by (Eqn 9) and (Eqn 11), we are able to
use a model for the overall aerial transportation/manipulation
task -

S, { (M+ m)§ = Ug + W (a4m)
Iyv0 =Upy+ g

where 69 = Otrans + Omanip corresponds to the remaining
disturbances arising during each operational task.

12)

1) Outer-loop Control: In order to stabilize the outer-loop
we use the control input

Ue = (M +m) (—Kyf — Ko+ Kix + 0+ War ) )

13)
where ¢ = ¢ — ¢4, x = [€ K, = diag(kp,,kp.),
K, = diag(k,,,k,.) and K; = diag(k;_,k; ) correspond
to proportional, derivative and integral matrix gains that
stabilize the translational error dynamics £~ . The magnitude
and angle of the control vector (Eqn 13) are the required
thrust and attitude to fulfill the trajectory-tracking objective.

2) Inner-loop Control: Unlike the thrust (actual control
input) the angle is generated via the pitch dynamics, that is
to say, the resulting angle of (Eqn 13) is the commanded
reference for the pitch dynamic system. To meet the overall
control objective it is necessary to guarantee tracking control
of the desired pitch attitude while providing robustness with
respect to disturbances encountered within each operational
regime.

Let us recall the disturbed dynamic 2nd-order model,
which corresponds to the second term of the equation (Eqn
12)

Iy0 = Uy + 8y (14)

which has a pure-feedback (lower-triangular) form suitable
to apply the Backstepping method. Since we are concerned
in the trajectory tracking problem, we are able to rewrite an
extended state-space model in terms of the error variable

él = €2

€y = %(ue—i-TM—i-éT)—éd (3)

where e; = 6 — 0, and ey = 6 — 9,1 are the position and
velocity errors, respectively.

Step 1: Let us propose Lyapunov function to deduce a
control that stabilizes the first integrator subsystem (15a)

1

Vi = 5elTel (16)
whose time-derivative is give by
Vi = eres (17)

which is rendered negative-definite (V) (e, e1) < 0) by using

eo as virtual controller, i.e. e = —Aje;.
Step 2: Let us propose the error variable considering the
virtual controller as a reference, i.e. e = —Aje;
Z = eg —eg:eg—i—)\lel (18)

which produces the extended state

€y = 2 — )\161 (19)
Computing the time-derivative of Eqn (18) yields

Z=¢ér+ \é1 (20)

where replacing the second term of Eqn (15) and Eqn (19)

1 ..
5= I—(U9+59)—9d+)\1(z—)\161) 1)
Y
The final Lyapunov Function
1 1
Vo = 5elTel + 5sz (22)
whose time-derivative is
Vo = ereg + 23 (23)

Substituting (19) and (23) lead us to

Vy = —Medtzer 2 i(U@ +dg) — 64 + Az — Alelll
Y ©
where we introduce the controller Uy to render (Eqn 24)
into a definite negative Lyapunov function. Notice that the
structure of the virtual state (18) can be used as sliding
surface, this enable us to include in the controller switching

term for disturbance rejection purposes.

Up = —fBsign(z) + Iy (69 — X1 (2 — Aie1)) —e1 — Aoz (25)

where 8 > 0. Assuming that |dg| < S the previous controller
lead us to

Vo = —Xe? — \p2? (26)

which means that the state vector v = (e, 2)7 converges
asymptotically to the origin. If z converge to zero, this means
that

(62 + /\161) —0 (27)

which implies that e5 converges asymptotically to the origin,
fulfilling the tracking control objective.

B. Manipulator: Switching-based Control

In order to fulfill the aforementioned operational profile,
it is necessary to guarantee the stability of the manipulator
controller throughout of both flight profiles. From (Eqn 6),
we can write the error dynamics as

éy =4 (28)
with e, = v — ~¢ and €y = ¥ — 4¢. In such dynamics,
let us assume the slow behavior of 4% (i.e. ¥ ~ 0). In
order to chose between two different desired trajectories for



~ according to the operational task, we define the reference
signal as
o(t
i { (®)
Yu

where 0}, represents an arbitrary small pitch value indicating
that the target zone is reached, which implies near-hovering
flight. The control input Uy should switch between two
different references expressed by (Eqn 29).

From (Eqn 29), when v¢ = 6(t), the closed-loop system
may be represented by I = A,T" where I’ = [e4 ¢é,]T and
Ag € R2%2_ In the other case, when v¢ = 1, the closed-loop
system (28) is represented as I' = A, T, where A, € R?*2.

With the aforementioned considerations, it can be de-
fined a state-dependent switched linear system, given by the
closed-loop system together with the switching conditions as

if 10] > 0n

if 16] < 6 @

F— Apl if |F‘ > 0y
= AT if D] <6,

C. Stability Proof

(30)

We can investigate a common Lyapunov function V if
the rate of decrease of V' along solutions, is not affected
by switching. Details on the use of a common Lyapunov
function can be found in [12], where the authors have chosen
the same pole locations for different subsystems.

In the case of the present application, there are two
subsystems for which different controllers are applied, and
thus finding a common Lyapunov function in not possible
[12]. For this reason, we proceed to investigate multiple
Lyapunov functions for each individual subsystem being
switched.

To translate the switching boundary to zero, a simple
change of coordinates can be made on the bound between
the two operational regions. Therefore, without lose of
generality, we consider the angle value 6, which is the
bound between the two operational regions, equal to zero,
i.e. 0h =0.

It is clear that each individual system in equation (Eqn 30)
is stable, since the matrices A; and A, are Hurwitz.

Now, we will focus on the system’s stability across switch-
ing boundaries, i.e., when the desired trajectory changes from
6 to v, and vice versa. Suppose that there is a family A,,
p € P of functions from R" to ", with P = 1,2,....,m
defining the finite index set. For the case of linear systems,
this results in a family of systems & = A,x with A4, € ">,
Let’s define a piecewise constant function o : [0,00) — P
with finite number of discontinuities (switching times) on
every bounded time interval. This function takes a constant
value on every interval between two consecutive switching
times. Then o gives the index o(t) € P of the system that
is actually active, at each instant of time ¢.

In the particular case presented in this paper, the finite
index set is defined as P = {6, ~,} and the matrices Ay €
R2, A,, € R? form the linear system (28), (30). Thus, we
can establish the following theorem:

Parameter Value[units]
I 0.35[m]
M 0.4[Kg]
m 0.03 [Kg]
Iy 0.177 [Kgm?Z]
I, 3.0625x 107
g 9.8x10~ % [Kgm?]
TABLE I

INTERACTIVE ROTORCRAFT VEHICLE

Theorem 1: Consider vectors t,,, Symmetric matrices .S,
with Q, € {z : :ETSpac > 0}, Vp € P having non-negative
entries and symmetric matrices P, such that:

T
A, Py + PyAy + 8,5, <0, B >0
0 < Py — Py+ fpgthy + tpgfoy for some t,, € R"

€29
(32)

With the boundary between (2, and €2, of the form {z :

g; = 0}, fpq € R". Then every continuous, piecewise ct

trajectory of the system & = A, tends to zero exponentially.
Proof: [Proof of Theorem 1]

Before proving Theorem 1, let’s use the following theo-
rem.

Theorem 2: The system & = f(t,z), f(t,z) = 0, is
exponentially stable on the region D = {x € R"|||z|| < r} if
there exists a Lyapunov function V' (¢,z) and some positive
constants ¢, ¢a, ¢z, such that V(¢,z) € [0,00) X Do,
Do = {& € R"[|2]| < r/m}

crllzl® < V(t,2) < eo|z]? (33)
ov. oV 9
— 4+ — < - 34
9t T o = csllz|l (34)
where m is the overshot from definition of exponential
stability.
Proof: [Proof of Theorem 2]
See [13], pp. 169. [ ]

The proof of Theorem 1 relies on the Theorem 2, then
using the Lyapunov function candidate V(z) = 2”7 P,x
and assuming that x(t) is continuous and piecewise C!,
hence, V (t) has the same characteristics. Premultiplying and
postmultiplying the condition (32) by «, the inequality on the
left side of (Eqn 33) is satisfied. In the same way, inequality
(Eqn 34) follows if we premultiply and postmultiply both
sides of (Eqn 31) by x.

|

V. NUMERICAL SIMULATION

Numerical simulations were carried out in order to support
the proposed control strategy evaluating the performance
of the rotational and translational disturbed subsystems. In
the simulation we use the parameters close to real aerial
platforms. Those parameters are depicted in table I

The translational task consisting in reaching ¢¢ = (z
2, 24 = 4)T, while the arm is meant to reach a desired angle
of 74 = 20 deg once on the target zone. The following figures
shows the behavior of the flying robot for different values of

d



switching thresholds 6, (Eqn 29). We consider the values:
(1) 6, = 10deg, (2) 0, = bdeg and (3) 8, = 0.5deg

1) Significant thresholds generates early activation of the
aerial grasping task (Fig.4 Fig.5)

2) It is the required to reduce the threshold to meet the
task-based objective (Fig.6 Fig.7)

3) Threshold values near to zero results appropriate to
fulfill the control strategy requirements. Since the -y
tracks @ during the translational flight (transportation
regime) and the manipulator robot reaches the desired
reference when the rotorcraft is on the target zone
(Fig.8, Fig.9).

In general, the latter results shown that the manipulator
robots is capable of the reach different commanded positions,
meeting the performance requirements imposed by the task-
based strategy. It is also important to highlight that the good
performance of rotorcraft’s translational states thanks to the
robust inner-loop controller (sliding-mode control), which is
robust enough to deal with the couplings provided by the
manipulation system.

VI. CONCLUDING REMARKS AND PERSPECTIVES

In general the paper presented the modeling and control of
a class of rotorcraft featuring an onboard robotic manipulator.
The energy-based modeling (Euler-Lagrange formalism) is
useful to identify the couplings arising from in kind multi-
body air vehicle. Since the full model structure is complex
to design a controller, we have proposed an operational
profile such that model is simplified. Likewise, the result-
ing model is then studied in order to apply a robust and
switching-based controllers. Specifically, we use a classical
hierarchical controller scheme. For the controller synthesis,
a classical time-scale separation is assumed between rota-
tional (fast-dynamics inner-loop) and translational motion
(slow-dynamics outer loop). Considering that couplings are
considered as disturbances in the present study, we use a
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SMC approach to solve the tracking problem of the inner-
loop. Since an task-based operational profile was proposed
to mitigate dynamic couplings, a hybrid controller was used
to control the manipulator robot throughout the operational
scope of the interactive air system. The implementation of
such controllers leads to a satisfactorily evolution of the
system states fulfilling the control objective. The following
stage to be addressed is the extension of this paper to the 3D
case considering that the simultaneous operations translation
and manipulation.
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