
K-RLE : A new Data Compression Algorithm for Wireless Sensor Network

Eugène Pamba Capo-Chichi, Hervé Guyennet
Laboratory of Computer Science - LIFC

University of Franche Comté
Besançon, France

{mpamba, herve.guyennet}@lifc.univ-fcomte.fr

Jean-Michel Friedt
FEMTO-ST/LPMO

University of Franche Comté
Besançon, France

jmfriedt@femto-st.fr

Abstract

In the context of the use of Wireless Sensor Network tech-
nology for environmental monitoring, the two main elemen-
tary activities of Wireless Sensor Network are data acqui-
sition and transmission. However, transmitting/receiving
data are power consuming task. In order to reduce
transmission-associated power consumption, we explore
data compression by processing information locally. In this
article, we evaluate and compare compression algorithms
on an ultra-low power microcontroller from Texas Instru-
ment within the MSP430 series used for designing Wire-
less Sensor Network. We propose and evaluate a new data
compression algorithm inspired from Run Length Encoding
called K-RLE.

Keywords: wireless sensor network, data compression

1 Introduction

Recent technological breakthrough in low power pro-
cessing units and communication devices have enabled the
development of distributed autonomous nodes able to sense
environmental data, compute and transmit it using wireless
communication to a base station known as Sink for future
analysis; thus, forming a Wireless Sensor Network [1].

However, Wireless Sensor Network is driven by a severe
constraint which is power management. This power man-
agement has led researchers to explore scheduling sensor
states. Scheduling sensor states is a technique that decides
which sensor may change its state (transmit, receive, idle,
sleep), according to the current and anticipated communi-
cations needs [2].

The most common technique for saving energy is the
use of sleep mode where significant parts of the sensor’s
transceiver is switched off. As described in [4, 3], in most
cases, the radio transceiver on board sensor nodes is the
main cause of energy consumption: hence, it is important to
keep the transceiver in switched off mode most of the time

to save energy. Nevertheless, using the sleep mode reduces
data transmission/reception rate and thus communication in
the network. The question is how to keep the same data rate
sent to the base station by reducing the number of transmis-
sion ?

In this article, we want to introduce in-network process-
ing technique in order to save energy. In-network pro-
cessing techniques allows the reduction of the amount of
data to be transmitted. The well known in-network pro-
cessing technique is data compression and/or data aggrega-
tion [5, 6]. Data compression is a process that reduces the
amount of data in order to reduce data transmitted and/or
decreases transfer time because the size of the data is re-
duced.

However, the limited resources of sensor nodes such as
processor abilities or RAM have resulted in the adapta-
tion of existing compression algorithm to WSN’s constraint.
Two main kinds of compression algorithms are available:
lossless and lossy. The best known lossless compression
algorithm for WSN is S-LZW [7].

Nevertheless, S-LZW which is an adaption for WSN
of the popular LZW data compression algorithm is a
dictionary-based algorithm. Compression algorithms based
on dictionary require extensive use of RAM: such algo-
rithms cannot be applied to most sensor platform config-
urations due to limited RAM. We hence introduce a generic
data compression algorithm usable by several sensor plat-
forms. In this article, we study the adaptation of a basic
compression algorithm called Run Length Encoding (RLE)
on an ultra-low power microcontroller product from Texas
Instrument known as TI MSP430, within the specific frame-
work of monitoring environmental temperatures.

The main problem of RLE is that compression results de-
pend on data sources. In [7], a comparison between SLZW
and RLE-ST has been done where RLE-ST is the applica-
tion of RLE with a structured data set. However, in the
present article, we make a comparison between S-LZW and
RLE using experimental temperature datasets without re-
ordering it and we propose a new algorithm named K-RLE



inspired from RLE in order to improve the compression re-
sults with different statistics of data sources.

This paper is organized as follows: the next section is
the Related work, experimental results are given in Section
3 and the Section 4 is the conclusion.

2 The compression algorithms

A very popular lossless dictionary-based compression al-
gorithm is LZW [8] which is a variant of LZ78. The best
known data compression algorithm for WSN is S-LZW [7]
which is a version of the previous popular algorithm LZW
adapted for WSN.

2.1 S-LZW

The default parameters defined in S-LZW are:

• a block size of 528 bytes which represents two flash
pages. S-LZW divides the uncompressed input bit-
streams into fixed size blocks and compresses each
block separately.

• a 512 entries dictionary. This algorithm starts by ini-
tializing the dictionary to all standard characters of the
alphabet which represent the first 256 entries of the
dictionary. For each block used in the compression,
the dictionary is re-initialized. A new string in the in-
put bitstream creates a new entry in the dictionary, that
is why the data to be compressed are limited. How-
ever, different strategies have been developed in order
to solve the problem of full dictionary. Two options
exist which are to freeze the dictionary and use it as-is
to compress the remainder of the data in the block, or
it can be reset and started from scratch. However, this
problem does not occur when the data block is small,
thus the dictionary is not full.

• A mini-cache of 32 entries is added to SLZW in order
to get an advantage of repetitiousness of sensor data.
The mini-cache is a hash-indexed dictionary of size N,
where N is a power of 2, that stores recently used and
created dictionary entries.

This previous compression algorithm based on dictio-
nary needs a significant RAM size that is why we cannot
apply it on our platform which is a TI MSP430F149 with
2KB RAM. Indeed, authors in [7] have demonstrated S-
LZW performances using the TI MSP430F1611 with 10 KB
RAM. In this way, we are interested in the study of RLE.

2.2 Run-Length Encoding

Run-Length Encoding (RLE) is a basic compression
algorithm. As described on [9], the simple idea behind

this algorithm is this: If a data item d occurs n consecutive
times in the input stream, we replace the n occurrences
with the single pair nd.

Figure 1. RLE compression algorithm

Fig.1 is the graphical representation of the RLE algo-
rithm [9] applied on temperature readings. However, be-
cause RLE is based on the same consecutive input stream,
its results depend on the data source. In this way, in order to
perform RLE results with different data sources statistics,
we have introduced a new compression algorithm which is
inspired from RLE named K-RLE which means RLE with
a K-Precision.

2.3 K-Run-Length Encoding

The idea behind this new algorithm is this:
let K be a number, If a data item d or data between d+K
and d-K occur n consecutive times in the input stream, we
replace the n occurrences with the single pair nd.



We introduce a parameter K which is a precision. K is
defined as:

• δ = K
σ with σ a minimum estimate of the Allan stan-

dard deviation [10]; i.e. σ is a representative of the
instrument measurement noise below which the preci-
sion is no longer significant.

• If K = 0, K-RLE is RLE. K has the same unit as the
dataset values, in this case degree.

However, the change on RLE using the K-precision in-
troduces data modified. Indeed, while RLE is a lossless
compression algorithm K-RLE is a lossy compression al-
gorithm. This algorithm is lossless at the user level because
it chooses K considering that there is no difference between
the data item d, d+K or d-K according to the application.

Figure 2. K-RLE compression algorithm

Fig.2 is the graphical representation of the K-RLE algo-
rithm which is a variant of the RLE algorithm.

3 Experimental results

In this section, we describe the results obtained using
the previous compression algorithms on a real temperature
dataset of 500 bytes. We have collected temperatures since
the 1st of January 2008 from different locations [11] which
are: Libreville (Gabon), Cayenne (Guyanna), Montbeliard
(France), Svalbard (Norway). We chose different locations
in order to study the behaviour of the previous algorithms
with different input streams. We have simulated the
sensing of temperature as it was sensed by the TI MSP430.
Actually, as described in [12], the ADC12 module, imple-
mented in the MSP430x14x and MSP430x16x devices,
is a high-performance 12-bit analog-to-digital converter.
ADC12 features include integrated temperature sensor. The
typical temperature sensor transfer function is:

V TEMP = 0.00355 ∗ (TEMPC) + 0.986.

In this way, we have determined the temperature values
as it was read by the ADC module of our platform based on
the TI MSP430 microcontroller.

Figure 3. The representation of temperatures
variation from different locations

The graphic above shows that the higher the latitude, the
greater the temperature change. Certainly, data compres-
sion algorithm results depend of the data source that is why
we consider our algorithms in real different conditions.
After that, we use the data compression ratio to estimate the
performance of our compression algorithms. It is defined
as:

ratio = 100 ∗ (1− compressed size
initial size )

Due to the RAM size limitation of the MSP430F149
to run S-LZW, we have done all the experiments on a



MSP430F1611 in order to make a comparison between S-
LZW and RLE with different data sources.

Figure 4. Comparison between S-LZW and
RLE

Fig.4 shows that even if the data compression variation
is the same, there is a great difference in the compression
ratio. In fact, S-LZW results are better than RLE. We also
noticed on both previous algorithms that the ratio worsens
when the location is far away from the Equator. While the
maximum gain for RLE is 17%, the average gain for S-
LZW is about 53%.

However, because we can not apply S-LZW on a sensor
platform with a limited RAM such as one which is based
on MSP423F149 for example, we have tried to increase the
ratio compression by using a variant of RLE named K-RLE.
We have used different values of K which are 1/2 and 2.

Figure 5. Comparison between RLE and K-
RLE

Fig.5 shows that the best results are obtained with 2-
RLE. There is a difference in the average of about 40% be-
tween RLE and 2-RLE. However, there is no gain with 1/2-
RLE compared to RLE. These results show that the choice

of K is a very important criterion. In contrast, K-RLE can
achieve higher compression ratios at the cost of data preci-
sion when K increases.

Figure 6. Comparison between S-LZW and K-
RLE

Fig.6 shows that in most cases, 2-RLE is better than S-
LZW. The average compression ratio for 2-RLE is 56%
while that of S-LZW is 53%. We can continue to increase
the K-RLE’s ratio by increasing the value of K at the cost of
the difference between the original and decompressed data.
Indeed, the feature of lossy compression is that compress-
ing data and then decompressing it retrieves data that may
well be different from the original, but is close enough to
be useful that is why the precision is chosen by the user ac-
cording to the application. In this way, we focused on the
study of the data rate modified during 2-RLE execution.

Figure 7. Representation of loss data rate for
2-RLE

The loss data rate is illustrated in Fig.7. It is defined as
the percentage of data forced to be the same of the previous
one close in value using K. It is about an average of 50% for
all temperature dataset. This means that half of the original
data have been modified using the K-precision of 2.



These previous results shows that the variant of RLE
named K-RLE increases the compression ratio at the cost
of 50% of loss data rate. In comparison with S-LZW which
also has a good ratio compression, it is usable on a sensor
platform with a limited RAM such as one which is based on
MSP423F149.

Nevertheless, there is a question: what about energy con-
sumption when the data compression ratio increases?

3.1 Energy consumption

In this section, we evaluate energy consumption of the
previous data compression algorithms using WSim which
is an accurate cycle hardware platform simulator. It is a part
of an integrated environment for development and rapid
prototyping of wireless sensor network applications known
as Worldsens [13]. WSim is used to debug the application
using the real target binary code. Indeed, we have used the
same program files developed for our real platform on this
simulator where the MSP430 platform has been defined.

For evaluating energy consumption, first of all, we have
focused on algorithms time execution. We have used led2
and led3 on active mode respectively during compression
and decompression. Fig.8 and Fig.9 show compression and
decompression using S-LZW on Libreville temperature
dataset.

After having time execution, to estimate energy con-
sumption, we have to consider the Microcontroller power
mode (Fig.10). At the end of our algorithm execution, we
put the Microcontroller on LPM3 operating mode in order
to identify the end of the execution of the program. In this
way, using the description of the consumption of each mode
(Fig.11), we can determine the consumption of each activ-
ity.

Figure 8. Execution time of 17 ms during
compression using S-LZW on Libreville tem-
perature dataset

Figure 9. Execution time of 12 ms during de-
compression using S-LZW on Libreville tem-
perature dataset

Figure 10. Microcontroller power mode

Figure 11. Operating modes [12]

Fig.12 illustrates energy consumption of previous data
compression algorithms. We notice that while SLZW is
lossless with a good compression ratio, it consumes more
energy. S-LZW uses 0,0224 mJ while RLE uses about
0,0053 mJ and 2-RLE 0,0103 mJ. RLE uses less energy
than the others. These results show the trade-off between
energy compression and good compression ratio. We also
notice that while RLE and 2-RLE have constant consump-
tion, S-LZW uses more energy when there is more change
on data.



Figure 12. Compression consumption

In contrast, Fig.13 shows that while 2-RLE uses more
energy than RLE for compression, it consumes very little
energy for decompression about 0,0011 mJ. S-LZW uses an
average of about 0,015 mJ and RLE 0,00165 mJ. We also
noticed that S-LZW uses more energy when there is more
change on data.

These previous results show that while RLE does not
give a very good compression ratio, it offers a consider-
able consumption improvement for compression and de-
compression.

Figure 13. Decompression consumption

4 Conclusion and Future Work

In this paper, we have evaluated several data compres-
sion algorithms on an ultra-low power microcontroller from
Texas Instrument known as MSP430. We have compared
a famous dictionary-based data compression algorithm for
WSN named S-LZW with RLE using real temperature
datasets. Because of the difficulty in using S-LZW on a
sensor platform with a limited RAM, we have introduced

a new algorithm inspired from RLE named K-RLE which
increases the ratio compression compared to RLE and S-
LZW. For K equal to 2, this new lossy compression algo-
rithm increases the ratio by 40% compared to RLE introduc-
ing 50% of loss data rate. The energy consumption study
shows that while 2-RLE offers a better compression ratio
than RLE and SLZW, it consumes half energy compared
to S-LZW which uses the most energy. In this article, we
have shown the trade-off between energy consumption and
compression efficiency. Since RLE does not have a great
compression ratio, it uses less energy than 2-RLE and S-
LZW. Future work will focus on the scalability issues of the
proposed enhancements.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: a survey. Computer
Networks, 38(4):393–422, 2002.

[2] M. Nosovic and T. Todd. Low power rendezvous and rfid
wakeup for embedded wireless networks. In In Annual
IEEE Computer Communications Workshop, pages 3325–
3329, 2000.

[3] N. Kimura and S. Latifi. A survey on data compression in
wireless sensor networks. In Information Technology: Cod-
ing and Computing, 2005. ITCC 2005. International Con-
ference on, volume 2, pages 8–13 Vol. 2, 2005.

[4] F. Marcelloni and M. Vecchio. A simple algorithm for data
compression in wireless sensor networks. Communications
Letters, IEEE, 12(6):411–413, June 2008.

[5] Croce, Silvio, Marcelloni, Francesco, Vecchio, and Mas-
simo. Reducing power consumption in wireless sensor net-
works using a novel approach to data aggregation. Computer
Journal, 51(2):227–239, March 2008.

[6] B. Krishnamachari, D. Estrin, and S. B. Wicker. The impact
of data aggregation in wireless sensor networks. In ICDCSW
’02: Proceedings of the 22nd International Conference on
Distributed Computing Systems, pages 575–578, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[7] C. M. Sadler and M. Martonosi. Data compression algo-
rithms for energy-constrained devices in delay tolerant net-
works. In SenSys, pages 265–278, 2006.

[8] T. A. Welch. A technique for high-performance data com-
pression. Computer, 17(6):8–19, 1984.

[9] D. Salomon. Data Compression: The Complete Reference.
Second edition, 2004.

[10] D. W. Allan. Time and frequency (time-domain) character-
ization, estimation, and prediction of precision clocks and
oscillators. Ultrasonics, Ferroelectrics and Frequency Con-
trol, IEEE Transactions on, 34(6):647–654, 1987.

[11] The Weather Underground website. [Online]. Available:
https://english.underground.com.

[12] Texas Instruments MSP430x1xx Family User’s Guide,
2006. [Online]. Available: http://focus.ti.com..

[13] A. Fraboulet, G. Chelius, and E. Fleury. Worldsens: devel-
opment and prototyping tools for application specific wire-
less sensors networks. In T. F. Abdelzaher, L. J. Guibas, and
M. Welsh, editors, IPSN, pages 176–185. ACM, 2007.


