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Abstract—In this paper, random forests are proposed for oper-
ating devices diagnostics in the presence of a variable number
of features. In various contexts, like large or difficult-to-access
monitored areas, wired sensor networks providing features to
achieve diagnostics are either very costly to use or totally im-
possible to spread out. Using a wireless sensor network can
solve this problem, but this latter is more subjected to flaws.
Furthermore, the networks’ topology often changes, leading
to a variability in quality of coverage in the targeted area.
Diagnostics at the sink level must take into consideration that
both the number and the quality of the provided features are
not constant, and that some politics like scheduling or data
aggregation may be developed across the network. The aim of
this article is (1) to show that random forests are relevant in this
context, due to their flexibility and robustness, and (2) to provide
first examples of use of this method for diagnostics based on data
provided by a wireless sensor network.
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1. INTRODUCTION
In machine learning, classification refers to identifying the
class to which a new observation belongs, on the basis of a
training set and quantifiable observations, known as proper-
ties.
In ensemble learning, the classifiers are combined to solve
a particular computational intelligence problem. Many re-
search papers encourage adapting this solution to improve the
performance of a model, or reduce the likelihood of selecting
a weak classifier. For instance, Dietterich argued that averag-
ing the classifiers’ outputs guarantees a better performance
than the worst classifier [1]. This claim was theoretically
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proven correct by Fumera and Roli [2]. In addition to this, and
under particular hypotheses, the fusion of multiple classifiers
can improve the performance of the best individual classifier
[3].

Two of the early examples of ensemble classifiers are Boost-
ing and Bagging. In Boosting algorithm [4], the distribution
of the training set changes adaptively based on the errors
generated by the previous classifiers. In fact, at each step, a
higher degree of importance is accorded to the misclassified
instances. At the end of the training, a weight is accorded
to each classifier, regarding its individual performance, indi-
cating its importance in the voting process. As for Bagging
[5], the distribution of the training set changes stochastically
and equal votes are accorded to the classifiers. For both
classifiers, the error rate decreases when the size of the
committee increases.

In a comparison made by Tsymbal and Puuronen [6], it is
shown that Bagging is more consistent but unable to take into
account the heterogeneity of the instance space. In the high-
light of this conclusion, the authors emphasize the importance
of classifiers’ integration. Combining various techniques can
provide more accurate results as different classifiers will not
behave in the same manner faced to some particularities in
the training set. Nevertheless, if the classifiers give different
results, a confusion may be induced [7]. It is not easy to
ensure reasonable results while combining the classifiers. In
this context, the use of random methods could be beneficial.
Instead of combining different classifiers, a random method
uses the same classifier over different distributions of the
training set. A majority vote is then employed to identify
the class.

In this article, the use of random forests (RF) is proposed
for industrial functioning diagnostics, particularly in the
context of devices being monitored using a wireless sensor
network (WSN). A prerequisite in diagnostics is to consider
that data provided by sensors are either flawless or simply
noisy. However, deploying a wired sensor network on the
monitored device is costly in some well-defined situations,
specifically in large scale, moving, or hardly accessible areas
to monitor. Such situations encompass nuclear power plants
or any structure spread in deep water or in the desert. Wireless
sensors can be considered in these cases, due to their low cost
and easy deployment.

WSNs monitoring is somehow unique in the sense that
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sensors too are subjected to failures or energy exhaustion,
leading to a change in the network topology. Thus, moni-
toring quality is variable too and it depends on both time and
location on the device. Various strategies can be deployed
on the network to achieve fault tolerance or to extend the
WSN’s lifetime, like nodes scheduling or data aggregation.
However, the diagnostic processes must be compatible with
these strategies, and with a device coverage of a changing
quality. The objective of this research work is to show
that RF achieve a good compromise in that situation, being
compatible with a number of sensors which may be variable
over time, some of them being susceptible to errors. More
precisely, we will explain why random methods are relevant
to achieve accurate diagnostics of an industrial device being
monitored using a WSN. The functioning of RF will then be
recalled and applied in the monitoring context. An algorithm
will be provided, and an illustration on a simulated WSN will
finally be detailed. This study differs from previous works as
it adresses RF for industrial prognostics based on incomplete
data provided by a WSN.

The remainder of this article is organized as follows. Section
2 summarizes the related work. In Section 3, we overview
the research works in industrial diagnostics. We present the
random forest algorithm in Section 4 and give simulation re-
sults in Section 5. This research work ends with a conclusion
section, where the contribution is summarized and intended
future work is provided.

2. RELATED WORK
Many research works have contributed in improving the
classification’s accuracy. For instance, tree ensembles use
majority voting to identify the most popular class. They have
the advantage of transforming weak classifiers into strong
ones by combining their knowledge to reduce the error rate.

Usually, the growth of each tree is governed by random vec-
tors sampled from the training set, and bagging is one of the
early examples of this. In this method, each tree is grown by
randomly selecting individuals from the training set without
replacing them [5]. The use of bagging can be motivated
by three main reasons: (1) it enhances accuracy with the
use of random features, (2) it gives ongoing estimates of the
generalization error, strength, and correlation of combined
trees, and (3) it is also good for unstable classifiers with large
variance.

Meanwhile, Freund introduced the adaptive boosting algo-
rithm Adaboost, which he defined as [8]: “a deterministic
algorithm that selects the weights on the training set for input
to the next classifier based on the misclassifications in the
previous classifiers”.
The fact that the classifier focuses on correcting the errors at
each new step remarkably improved the accuracy of classifi-
cations.

Shortly after, in [9] randomness was again used to grow the
trees. The split was defined at each node by searching for
the best random selection of features in the training set. Ho
[10] introduced the random subspace, in which he randomly
selects a subset of vectors of features to grow each tree.
Diettrich introduced the random split selection where at each
node, a split is randomly selected among k best splits [1].

For these methods, and like bagging, a random vector sam-
pled to grow a tree is completely independent from the

previous vectors, but is generated with the same distribution.

Random split selection [1] and introducing random noise into
the outputs [11] both gave better results than bagging. Nev-
ertheless, the algorithms implementing ways of re-weighting
the training set, such as Adaboost [8], outperform these two
methods [12].

Therefore, Breiman combined the strengths of the methods
detailed above into the random forest algorithm. In this
method, individuals are randomly selected from the training
set with replacement. At each node, a split is selected
by reducing the dispersion generated by the previous step
and consequently lowering the error rate. This algorithm is
further detailed in Section 4.

3. OVERVIEW OF DIAGNOSTICS
With their constantly growing complexity, current industrial
systems witness costly downtime and failures. Therefore, an
efficient health assessment technique is mandatory. In fact, in
order to avoid expensive shutdowns, maintenance activities
are scheduled to prevent interruptions in system operation.
In early frameworks, maintenance takes place either after a
failure occurs (corrective maintenance), or according to pre-
defined time intervals (periodic maintenance). Nevertheless,
this still generates extra costs due to “too soon” or “too late”
maintenances. Accordingly, considering the actual health
state of the operating devices is important in the decision
making process. Maintenance here becomes condition-based,
and is only performed after the system being diagnosed in a
certain health state.

Diagnostics is an understanding of the relationship between
what we observe in the present and what happened in the
past, by relating the cause to the effect. After a fault takes
place, and once detected, an anomaly is reported in the
system behavior. The fault is then isolated by determining
and locating the cause (or source) of the problem. Doing so,
the component responsible for the failure is identified and the
extent of the current failure is measured. This activity should
meet several requirements in order to be efficient [13]. these
requirements are enumerated in the following.

(1) Early detection: in order to improve industrial systems’
reliability, fault detection needs to be quick and accurate.
Nevertheless, diagnostic systems need to find a reasonable
trade-off between quick response and fault tolerance. In other
words, an efficient diagnostic system should differentiate
between normal and erroneous performances in the presence
of a fault.

(2) Isolability: fault isolation is a very important step in the
diagnostic process. It refers to the ability of a diagnostic
system to determine the source of the fault and identify the
responsible component. With the isolability attribute, the
system should discriminate between different failures. When
an anomaly is detected, a set of possible faults is generated.
While the completeness aspect requires the actual faults to be
a subset of the proposed set, resolution optimization necessi-
tates that the set is as small as possible. A tradeoff then needs
to be found while respecting the accuracy of diagnostics.

(3) Robustness and resources: it is highly desirable that the
diagnostic system would degrade gracefully rather than fail
suddenly. For this finality, the system needs to be robust
to noise and uncertainties. In addition to this, a trade-off
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between system performance and computational complexity
is to be considered. For example, on-line diagnostics require
low complexity and higher storage capacities.
(4) Faults identifiability: a diagnostics system is of no
interest if it cannot distinguish between normal and abnormal
behaviors. It is also crucial that not only the cause of
every fault is identified, but also that new observations of
malfunctioning would not be misclassified as a known fault
or as normal behavior. While it is very common that a
present fault leads to the generation of other faults, combining
the effects of these faults is not that easy to achieve due to
a possible non-linearity. On the other hand, modeling the
faults separately may exhaust the resources in case of large
processes.
(5) Clarity: when diagnostic models and human expertise
are combined together, the decision making support is more
reliable. Therefore, it is appreciated that the system explains
how the fault was triggered and how it propagated, and
keeps track of the cause/effect relationship. This can help
the operator use their experience to evaluate the system and
understand the decision making process.
(6) Adaptability: operating conditions, external inputs, and
environmental conditions change all the time. Thus, to ensure
relevant diagnostics at all levels,the system should adapt to
changes and evolve in the presence of new information.

Existent diagnostic models have several limitations. Some of
which are summarized in Table 1.

Table 1. Limitations of diagnostic models

Diagnostic model Drawbacks
Markovian process -Aging is not considered

-Different stages of degradation
process cannot be accounted for
-Large volume of data is required
for the training
-The assumptions are not always
practical

Bayesian networks -Prior transitions are not considered
-Complete reliance on accurate
thresholds
-Many state transitions are needed
for efficient results
-Unable to predict unanticipated
states

Neural networks -Significant amount of data for the
training
-Retraining is necessary with every
change of conditions
-Pre-processing is needed to reduce
inputs

Fuzzy systems -Increasing complexity with every
new entry
-Domain experts are required
-Results are as good as the develop-
ers’ understanding

The degradation process can be considered as a stochastic
process. The evolution of the degradation is a random
variable that describes the different levels of the system’s
health state, from good condition to complete deterioration.
The deterioration process is multi-state and can be divided

into two main categories [14]:

1. Continuous-state space: the device is considered failed
when the predefined threshold is reached.
2. Discrete-state space: the degradation process is divided
into a finite number of discrete levels.

As condition-based maintenance relies on reliable scheduling
of maintenance activities, an understanding of the degrada-
tion process is required. For this finality, in this paper, we
consider the discrete-state space deterioration process

4. RANDOM FORESTS
The RF algorithm is mainly the combination of Bagging [5]
and random subspace [10] algorithms, and was defined by
Leo Breiman as “a combination of tree predictors such that
each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in
the forest” [12]. This method resulted from a number of
improvements in tree classifiers’ accuracy.

This classifier maximizes the variance by injecting random-
ness in variable selection, and minimizes the bias by growing
the tree to a maximum depth (no pruning). The steps of
constructing the forest in this paper are detailed in Algorithm
1.

Algorithm 1 Random forest algorithm
Input: Labeled training set S, Number of trees T , Number

of features F .
Output: Learned random forest RF .

initialize RF as empty
for i in 1..T do
S′i ← bootstrap (S)
initialize the root of tree i
repeat

if current node is terminal then
affect a class
go to the next unvisited node if any

else
select the best feature f∗ among F
sub-tree← split(S′i, f

∗)
add (leftChild, rightChild) to tree i

end if
until all nodes are visited
add tree i to the forest

end for

In a RF, the root of a tree i contains the instances from the
training subset S′i, sorted by their corresponding classes. A
node is terminal if it contains instances of one single class,
or if the number of instances representing each class is equal.
In the alternative case, it needs to be further developed (no
pruning). For this purpose, at each node, the feature that
guarantees the best split is selected as follows.

1. The information acquired by choosing a feature can be
computed through:
(a) The entropy of Shannon, which measures the quantity

of information

Entropy(p) = −
c∑

k=1

P (k/p)× log(P (k/p)) (1)
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where p is the number of examples associated to a position
in the tree, c is the total number of classes, k/p denotes
the fraction of examples associated to a position in the tree
and labelled class k, P (k/p) is the proportion of elements
labelled class k at a position p.

(b) The Gini index, which measures the dispersion in a
population

Gini(x) = 1−
c∑

k=1

P (k/p)2 (2)

where x is a random sample, c is the number of classes, k/p
denotes the fraction of examples associated to a position in
the tree and labelled class k, P (k/p) is the proportion of
elements labelled class k at a position p.

2. The best split is then chosen by computing the gain of
information from growing the tree at given position, corre-
sponding to each feature as follows:

Gain(p, t) = f(p)−
n∑
j=1

Pj × f(pj) (3)

where p corresponds to the position in the tree, t denotes
the test at branch n, Pj is the proportion of elements at
position p and that go to position pj , f(p) corresponds to
either Entropy(p) or Gini(p).
The feature that provides the higher Gain is selected to split
the node.

The optimal training of a classification problem can be NP-
hard. Tree ensembles have the advantage of running the
algorithm from different starting points, and this can better
approximate the near-optimal classifier.

In his paper, Leo Breiman discusses the accuracy of random
Forests. In particular, he gave proof that the generalized error,
although different from one application to another, always has
an upper bound and so random forests converge [12].

The injected randomness can improve accuracy if it min-
imizes correlation while maintaining strength. The tree
ensembles investigated by Breiman use either randomly se-
lected inputs or a combination of inputs at each node to grow
the tree. These methods have interesting characteristics as:

- Their accuracy is at least as good as Adaboost
- They are relatively robust to outliers and noise
- They are faster than bagging or boosting
- They give internal estimates of error, strength, correlation,
and variable importance
- They are simple and the trees can be grown in parallel

There are four different levels of diversity which were defined
in [15], level 1 being the best and level 4 the worst.

• Level 1: no more than one classifier is wrong for each
pattern.
• Level 2: the majority voting is always correct.
• Level 3: at least one classifier is correct for each pattern.
• Level 4: all classifiers are wrong for some pattern.

RF can guarantee that at least level two is reached. In fact,
a trained tree is only selected to contribute in the voting if it
does better than random, i.e. the error rate generated by the
corresponding tree has to be less than 0.5, or the tree will be
dropped from the forest [12].

In [16], Verikas et al. argue that the most popular classifiers
(Support Vector Machine SVM, MultiLayer Perceptron MLP,
and Relevance Vector Machine RVM) provide too little in-
sight about the variable importance to the derived algorithm.
They compared each of these methodologies to the random
forest algorithm to find that in most cases RF outperform
other techniques by a large margin.

5. EXPERIMENTAL STUDY
Data collection
In this paper, we consider two sets of experiments. The sensor
network is constituted by 110 nodes, sensing respectively
the levels of temperature (50 sensors), pressure (50), and
humidity (10) on the industrial device under consideration.

Set of experiment 1—In this set of experiments, we consider
that no level of correlation is introduced betweent the differ-
ent features. Moreover, we suppose that at time t:

• Under normal conditions, temperature sensors follow a
Gaussian law of parameter (20×(1+0.005t), 1), while these
parameters are mapped to (35, 1) in case of a malfunction of
the industrial device. Finally, these sensors return the value 0
when they break down.
• The Gaussian parameters are (5 × (1 + 0.01t), 0.3) when
both the industrial device and the pressure sensors are in
normal conditions. The parameters are changed to (15, 1) in
case of industrial failure, while the pressure sensors return 1
when they are themselves broken down.
• Finally, the 10 humidity sensors produce data following
a Gaussian law of parameter (52.5 × (1 + 0.001t), 12.5)
when they are sensing a well-functioning device. These
parameters are set to (70, 10) in case of device failure, while
malfunctioning humidity sensors produce the value 0.

Set of experiment 2— For this set, a linear correlation is
injected between the studied features. A comprhensive study
of correlation between features in maintenance prediction is
given in [17].

• Under normal conditions, temperature sensors follow a
Gaussian law of parameter (20×(1+0.005t), 1), while these
parameters are mapped to (35, 1) in case of a malfunction of
the industrial device. Finally, these sensors return the value 0
when they break down.
• When both the industrial device and the pressure sensors
are in normal conditions, the value of pressure is computed
as (x ÷ 2 + 10), where x is the value of temperature. The
parameters are changed to (15, 1) in case of industrial failure,
while the pressure sensors return 1 when they are themselves
broken down.
• For a well-functioning device, the 10 humidity sensors pro-
duce data in the form of (x×525+12). These parameters are
set to (70, 10) in case of device failure, while malfunctioning
humidity sensors produce the value 0.

For both data sets, the probability that a failure occurs at time
t follows a Bernoulli distribution of parameter t÷ 35000.

Five levels of functioning are attributed to each category of
sensors, depending on the abnormality of the sensed data.
These levels are defined thanks to 4 thresholds, which are
22.9, 24.5, 26, and 28 degrees for the temperature (a tem-
perature lower than 22.9°C is normal, while a sensed value
larger than 28°C is highly related to a malfunctioning), 5.99,
6.4, 7.9, and 9 bars for the pressure parameter, and finally 68,
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80, 92, and 95 percents for the humidity.

Data is generated as follows.

• For each time unit t = 1..100 during the industrial device
monitoring,
– For each category c (temperature, pressure, humidity) of

sensors:
∗ For each sensor s belonging to category c:
· If s has not yet detected a device failure:
1. s picks a new data, according to the Gaussian law cor-

responding to a well-functioning device, which depends on
both t and c,
2. a random draw from the exponential law detailed previ-

ously is realized, to determine if a breakdown occurs on the
location where s is placed.
· Else s picks a new datum according to the Bernoulli

distribution of a category c sensor observing a malfunctioning
device.

The global failure level F t of a set of 110 sensed data
produced by the wireless sensor network at a given time t is
defined as follows. For each sensed datum dti, i = 1..110,
let f ti ∈ {1, .., 5} be the functioning level related to its
category (pressure, temperature, or humidity). Then F t =
max f ti | i = 1..110.

Random forest design
The random forest, constituted in this set of experiments by
100 trees, is defined as follows. For each tree Ti, i = 1..100:

• A sample of 67% of dates τ1, . . . , τ67 ∈ {1, ..., 100} is
extracted
• The root of the tree Ti is the tuple
(]{j | F τj = n, j = 1..67})n=1..5, where ]X is the cardinal-
ity of the finite setX . Thus, its n-th coordinate corresponds to
the number of times the device has been in the global failure
n in this sample of observation dates.
• The category c having the largest Gain for the dates in the
root node is selected. The dates are divided into five sets
depending on thresholds related to c. Then, 5 edges labeled
by both c and failure levels l0i = {1, .., 5} are added to Ti,
as depicted in Figure 1. They are directed to (at most) 5 new
vertices containing the tuples(
]{j | F τj = n and d

τ i
j

i has a c level equal to li}
)
n=1,..,5

.

In other words, we only consider in this node a sub-sample
of dates having their functioning level for category c equal to
l0i , and we divide the sub-sample into 5 subsets, depending
on their global functioning levels: the tuple is constituted by
each cardinality of these subsets, see Fig. 1.
• The process is continued, with: this vertex as a new root,
the reduced set of observed dates, and the categories minus
c. It is stopped when either all the categories have been
regarded, or when tuple of the node has at least 4 components
equal to 0.

Providing a diagnostic on a new set of observations
Finally, given a new set of observations at a given time, the
diagnostics of the industrial device is obtained as follows.

Let T be a tree in the forest. T will be visited starting from its
root until reaching a leaf as described below.

1. All the edges connected to the root of T are labeled with

the same category c, but with various failure levels. The
selected edge e is the one whose labeled level of failure
regarding c corresponds to the c-level of failure of the ob-
servations.
2. If the obtained node n following edge e is a leaf, then the
global level of failure of the observations according to T is
the coordinate of the unique non zero component of the tuple.
If not, the tree walk is continued at item 1 with node n as new
root.

The global diagnostics for the given observation is a majority
consensus of all the responses of all the trees in the forest.

Numerical simulations
The training set is obtained by simulating 100 observations
for 10 successive times, which results in 1000 instances. The
resulting data base is then used to train 100 trees that will
constitute the trained random forest.

Figure 2 presents the delay between the time the system
enters a failure mode and the time of its detection. This
is done in the absence of correlations between the different
features. The 0 time value of delay, the negative values, and
positive value refer to in-time predictions, early predictions
and late predictions of failures, respectively. The plotted
values are the average result per number of simulations which
varies from 1 to 100. With time, sensor nodes start to fail in
order to simulate missing data packets. As a result, the RF
algorithm was able to detect 54% of the failures either in time
or before their occurrence.

For each of the 100 performed simulations, we calculated
the average number of errors in fault detection, produced
by the trees in the forest. Figure 3 shows that this error
rate remained below 15% through the simulation. This
error rate includes both “too early” and “too late” detections.
When certain sensor nodes stop functioning, this leads to a
lack on information, which has an impact on the quality of
predictions; this explains a sudden increase in the error rate
with time. We can conclude from the low error rate in the
absence of some data packets that increasing the number of
trees in the RF helps improve the quality and accuracy of
predictions.

As described in Section 5, a correlation was introduced be-
tween the features. Figure 4 shows the number of successful
diagnostics when the number of tree estimators in the forest
changes. As shown in this figure, the RF method guarantees
a 60% success rate when the number of trees is limited to 5.
As this number grows, the accuracy of the method increases
to reach 80% when the number of trees is around 100.
Comparing to the previous results, the correlation between
the features helps decrease the incertainties in diagnostics
when the number of trees increases. The algorithm is able
to understand the relationship between two features. Thus,
when some values describing a feature are missing, the algo-
rithm can deduct them from the available information about
the rest features.

6. CONCLUSION
Instead of using wired sensor networks for a diagnostics and
health management method, it is possible to use wireless
sensors. Such a use can be motivated by cost reasons or due to
specific particularities of the monitored device. In the context
of a changing number and quality of provided features, the
use of random forests may be of interest. These random
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Figure 1. Example of a tree in the random forest.

Figure 2. Delay in failure detection with respect to the number of simulations.

Figure 3. Error rate in diagnostics with respect to the number of simulations
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Figure 4. Number of successful diagnostics with respect to the number of trees.

classifiers were recalled with details in this article, and the
reason behind their use in the context of a wireless sensors
network monitoring was explained. Finally, algorithms and
first examples of use of these random forests for diagnostics
using a wireless sensor network were provided. The simu-
lation results showed that the algorithm guarantees a certain
level of accuracy even when some data packets are missing.

In future work, the authors’ intention is to compare various
tools for diagnostics to the random forests, either when
considering wireless sensor networks or wired ones. Com-
parisons will be carried out on both theoretical and practical
aspects. The algorithm of random forests, for its part, will be
extended to achieve prognostics and health management too.
Finally, the method for diagnosing an industrial device will
be tested on a life size model, to illustrate the effectiveness of
the proposed approach.
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