
Using SysML for Smart Surface Modeling

Alain Giorgetti, Ahmed Hammad and Bruno Tatibouët
LIFC

University of Franche-Comté
16, Route de Gray, F-25030 Besançon

{alain.giorgetti, ahmed.hammad, bruno.tatibouet}@univ-fcomte.fr

Abstract—A smart surface is a distributed Micro-Electro-
Mechanical System (MEMS) designed for conveying micro-
scopic objects over a meso-scale distance, by the coordinated
action of several microcells composed of microsensors, microac-
tuators and control units. We present a high-level description
of a smart surface with the System Modeling Language
(SysML). We show how various SysML views (requirement,
block, constraint and parametric diagrams) may accompany
the design of such a complex system with precise but simple
models. We also establish links between SysML and other
technologies and tools for complex system modeling.

Keywords-Smart Surface, SysML, Modeling

I. I NTRODUCTION

Current miniaturization and integration trends of elec-
tronic devices require to assemble chips and other compo-
nents that become too small to be directly handled by hu-
mans. The future electronics assembly industry will have to
scale with the technology, using automated micromachines
combining manipulators and intelligent conveying systems.

A smart surfaceis a distributed Micro-Electro-Mechanical
System (MEMS) designed to convey microscopic objects
over a meso-scale distance. The global conveyance effect
results from the coordinated action of microcells spatially
organized in a 2D array. Each microcell is composed of
a microsensor, a microactuator and a control unit. The
control units realize communications with their neighbours
and computations to adjust the actuator local effects from
the sensor measures.

Modeling such a complex system is a challenge addressed
in [1], [2], [3] with the motivation of validating by simulation
the realization of a Distributed MEMS Air-flow Surface
Micromanipulator (DMASM, see Figure 1). For technolog-
ical reasons, the corresponding realization was limited to
the microactuator layer. Integrating the sensor and control
layers was the goal of a multidisciplinary research project
named “Smart Surface”, initiated in 2007 and supported by
the French Research Agency (ANR).

During this project many attempts have failed to extend
the existing models with the distributed control of the
microactuators. We claim that the failure is due in some
extend to the intrication of the model itself, but also to
the modeling language, namely VDHL-AMS [4]. The usual
practice of this extension of VHDL to mixed signals was

Figure 1. Conveyance of micro objects

indeed not shared by the physicians, automaticians and com-
puter scientists collaborating in the project. Anticipating this
difficulty we have contributed to this project by investigating
an adapted language.

A previous work [5] considered a smart surface as a set
of heterogenousSoC (System on Chip) systems. System
on Chip (SoC) refers to integrating all components of an
electronic system into a single integrated electronic circuit.
It may contain digital, analog, mixed-signal, and often radio-
frequency functions all on one chip. A typical application is
in the area of embedded systems. The interaction and inte-
gration of hardware and software components are essential
parts of their design. A preliminary smart surface modeling
was realized in [5] with theUML4Socprofile.

The present work suggests to use the System Modeling
Language (SysML) as a better solution for the multidis-
ciplinary modeling of relevant physics (electromechanics,
electronics, . . . ) and control of distributed MEMS.SysMLis
a modeling language for systems engineering. This covers
complex systems which include a broad range of heteroge-
neous domains, in particular hardware and software. Several
similarities exist between the methods used in the area of
systems engineering and complexSoCdesign, such as the
need for accurate requirements capture, system specification
and simulation, system validation and verification. There
are several work [6], [7], [5] in this area, usingUML
as specification language and checking the properties of



reliability.
This paper addresses the graphical description of a smart

surface bySysML diagrams. These diagrams help under-
standing the specification for stakeholders who are not
familiar with the VHDL-AMS language, such as customers
or certification authorities.SysMLfacilitates also communi-
cation between project members.

Section II gives a brief description ofSysML. Section III
informally presents the smart surface example. Section IV
presents its modeling by various diagrams, including the
requirement diagram, two block diagrams and the parametric
diagram. Finally, we end up by a conclusion and some
perspectives of this work.

II. SysML

SysML has been proposed by the Object Manage-
ment Group (OMG, http://www.omg.org) together with
the International Council on Systems Engineering (IN-
COSE, http://www.incose.org) and the AP233 consor-
tium (http://ap233.eurostep.com) with the aim to define
a general purpose modeling language for systems en-
gineering. It is based on the actual standard for soft-
ware engineering, the Unified Modeling Language (UML,
http://www.uml.org) version 2.0, with some extensions (see
figure 2), and it was developed as a response to the request
for proposal (RFP) issued by the OMG in March 2003
(http://syseng.omg.org/UMLfor SE RFP.htm) and adopted
as a standard in May 2006 (http://www.omgsysml.org).
SysML is a modeling language for representing systems
and product architectures, as well as their behavior and
structure. It adapts to systems engineering standard modeling
techniques from software development, and supports the
specification, design, analysis, verification and validation of
a broad range of complex systems.

Figure 2. Comparison of SysML 1.0 with UML 2.0

(SysML) is the first formal UML profile dedicated to
the specification of professional engineering systems. It has
been developed during many years but has only recently

been fully agreed and standardized.SysMLhas meanwhile
evolved over several major iterations, including two sep-
arated proposals from different teams. As a consequence
of this long and often confusing evolution, there are many
misconceptions associated withSysML, such as its status as a
profile, its autonomy as a language and how it can be applied
in a better way for systems engineering.SysMLsignificantly
extendsUML with system-related formal constructs, such as
real-world physical constraints, physical flows and connec-
tions between physical components.

III. Smart SurfaceINFORMAL DESCRIPTION

A smart surfaceconsists of a rectangular grid of rectangu-
lar cells. Each cell consists of a microactuator, a microsensor
and a microcontroller. The purpose of a smart surface is
to sort microscopic objects according to parameters such
as their shape and/or colour. The following smart surface
characteristics are extracted from a specification document
conjointly written during the “Smart Surface” project.

A. The grid

• The grid is divided in 24 lines of 24 cells each, a cell
having a size of about 2 mm.

• There is no centralized control. Cells communicate step
by step through their direct neighbours.

B. Objects to sort

• We assume, at first, that a object should be found from
a small number of options (2, 3 or 4).

• Objects to convey are typically included in a square of
less than 4µm a side.

C. Microactuator

• A microactuator can communicate with its 4 neighbours
via its cell controller,

• A microactuator acts on the objects through an air-flow
(should not be specified at this level).

D. Sorting

• In the first instance, at a given moment, at most one
object may be present on the smart surface,

• The sorting will be done according to the shape of the
object.

IV. M ODELING A SMART SURFACE WITH SysML

The former informal specification is obviously incom-
plete. Even more detailed, it would remain imprecise, due
to the ambiguities of natural languages. We suggest to
replace it with SysML diagrams. Typical instances of the
most important diagrams for a smart surface modeling are
presented one after the other. Physical concepts and laws are
borrowed from [2].



Figure 3. Requirement diagram

A. Requirement diagram

The SysML requirement diagram allows several ways
to represent requirements relationships. The relationships
derive, satisfy, verify, refine, trace andhierarchyare briefly
explained below :

• The derive relationship relates a derived requirement
to its source requirement. In a requirement diagram,
the derive relationship is represented by the keyword
“deriveReqt”.

• Thesatisfyrequirement describes how a model satisfies
one or more requirements. It represents a dependency
relationship between a requirement and a model ele-
ment (from anotherSysMLdiagram) that fulfills that
requirement. This relationship is represented by the
keyword “satisfy”. One example is to associate a re-
quirement to aSysMLblock diagram.

• The verify relationship defines how a test case can
verify a requirement. This includes standard verification
methods for inspection, analysis, demonstration or test.
The keyword “verify” represents this relationship.

• The refinerelationship describes how a model element
(or set of elements) can be used to later refine a
requirement. For example, how a Use Case can rep-
resent a requirement in aSysMLrequirement diagram.
The relationship is represented in the diagram by the
keyword “refine”.

• The trace relationship provides a general purpose re-

lationship between a requirement and any other model
element. Its semantics has no real constraints and is not
well-defined as the other relationships.

• In large and complex systems, it is common to have a
hierarchy of requirements, and their organization into
various levels helps in dealing with system complexity.
SysMLallows splitting complex requirements into sim-
pler ones, as a hierarchy of requirements related to each
other. The advantage is that the complexity of systems
is treated from the early beginning of development, by
decomposing complex requirements.

In Figure 3, the requirementslocalizeObject, determineDi-
rectionanddetermineNewPositionare broken down from the
requirementmoveObject.

B. Block Definition Diagram

SysML provides a structural element called ablock. A
block can represent any type of component of the system,
physical, logical, functional, or human. Blocks are declared
within a Block Definition Diagram(BDD) based on the
UML Composite Structure Diagram, which extends the
UML Class Diagram. A BDD describes the structure of
the system. In particular, it can represent association and
composition relationships.

Figure 4 shows an example of aBDD with four blocks. It
is the first level of modeling of the smart surface, the most
abstract. The block namedSmart Surface represents the
system as a whole. It is decomposed into three sub blocks



Figure 5. Block Definition Diagram, level 2

(Surface, Interface and Object) and is linked to them by
the following relationships :

• composition to theSurfaceand Interfaceblocks,
• aggregation to theObjectblock.

The block namedObject represents a microscopic object in
the Smart Surfaceenvironment. The block namedSurface
represents the distributed MEMS under design. The block
named Interface represents all the interactions between
Surface andObject.

At a second (more detailed) level of modeling (see
Figure 5), the blockSurface is linked by composition to
a new block namedCell. The composition relation with
the block Cell is labeled with the multiplicity1..∗ and
expresses that the surface is composed of many cells. The
block Cell is itself composed of three parts, namely a
microactuator, a microsensor and a microcontroller. Each of
them is represented by a block.

The two blocksSurfaceandCell represent physical com-
ponents and together constitute a physical model of the smart
surface. On the other hand the blockInterface is a logical
model of the surface interactions with its environment, here
reduced to a microscopic object moving above the surface.
This concept of interface has been introduced in [2] to model
the multiphysical exchanges (mechanical, electrical, fluidic,
etc) between a MEMS and its environment.

Requirement traceability is made possible by the defini-
tion of a relationshipsatisfy between theInterface block
and an element of the requirement diagram.

C. Internal Block Diagram

The Internal Block Diagram(IBD) allows the designer
to refine the structural aspect of the model. TheIBD is the
equivalent inSysMLof the composite structure diagram in
UML. In the IBD, parts are basic elements assembled to



Figure 4. Block Definition Diagram, level 1

define how they collaborate to realize the block structure
and/or behavior. In theIBD the designer can refine the
definition of the interactions between blocks by defining flow
ports along the following rules:

• ports are parts available for connection outside of the
owning block;

• ports are typed by interfaces or blocks which define
what can be exchanged through them;

• ports are connected using connectors which represent
the use of an association in theIBD.

Two types of ports are available inSysML:
• standard ports handling requests and invocations of

services with other blocks (basically the same concept
as inUML 2.0);

• flow ports which let blocks exchange flows of informa-
tion.

Flow ports specify the interaction points among blocks and
parts supporting the integration of behavior and structure.
For standard ports, an interface class is used to list the
services offered by the block. For flow ports, a flow specifi-
cation is created to list the type of data that can flow through
the port.

Figure 6 shows how to represent the internal structure of
the blockCell by an IBD.

Figure 6 shows two flow ports: the flow portDirection
enable continuously passes the direction of the object.
Through the flow portObject detection the microsensor
sends to the microcontroller a signal to indicate the detection
of an object.

D. Constraint Blocks

A constraint blockencapsulates a physical property of the
system or a constraint on it. Syntactically it is a block labeled
with the keyword<<constraint>> and identified by a
name. The next compartment in the constraint block defines

Figure 6. Internal Block Diagram of thecell block

the constraint as an arbitrarily complex logical expression, in
a formal (e.g. using MathML (http://www.w3.org/Math) or
OCL (http://www.omg.org/spec/OCL/2.0) or informal lan-
guage. The last constraint block compartment enumerates
the constraint parameters as attributes with their type.

Up to here, our smart surface modeling is generic. It does
not yet describe the physical structure and behavior of a
particular realization. Constraint blocks are the key for this
physical description.

As a first example, Figure 7 shows constraint blocks
specifying the behavioral laws of a pneumatic microactuator
represented in Figure 1 and described in VHDL-AMS in [2].
The constraint block namedElectrostatic forcecorresponds
to the use case when the microactuator is active and produces
an air flow in one direction. Two other constraints not
reproduced here correspond to the other two cases, when the
microactuator is active in the reverse direction and when it
is off.

Constraint blocks define generic constraints that can be
reused in multiple contexts. Reusable constraint definitions
are specified in block definition diagrams and can be
packaged into general-purpose or domain-specific model
libraries. For instance theVelocity constraint in Figure 7
is a general-purpose definition that could be packaged and
imported in the present model.

Along the functional virtual prototyping (FVP) method-
ology promoted in [1], the constraint blocks presented in
Figure 7 take part to a low physical description level called
the “component model”. But constraint blocks can also de-
scribe the highest global behavioral description level of FVP,
called the “behavioral model”. Figure 8 illustrates this with
three constraint blocks specifying the interations between
the MEMS array and an object above it. It is a simplified
version of the behavioral model described (mathematically
and in VHDL-AMS) in [1]. Since it considers the smart
surface as a whole, this specification is clearly at the most
global modeling level and is a possible realization of the



Figure 7. Constraint blocks of a pneumatic microactuator

Figure 8. Constraint blocks of the interface

Interface block, as mentionned in the BDD title. The formulas in the constraint blocksHorizontal dy-



namic and Vertical dynamic are two instances of the
fundamental law of solid mechanics, respectively expressed
along an horizontal axis and the verticalz-axis. The hor-
izontal axis can be assumed to be thex-axis, a simi-
lar law not reproduced here also holds along they-axis.
fl and fc respectively are the levitation and conveyance
forces produced by the air-flow,m is the object mass and
(posx,posy,posz) is its position in a 3D Cartesian coordinate
system. TheLevitation and Conveyanceconstraint blocks
define approximative laws to compute the intensity of the
levitation and conveyance forces, respectively. The conveyed
object is assumed to be parallelepipedic with a square side
of length length and a thickness given by thethickness
quantity.dens is the air density,cxp is the air pressure,voff
(resp.va) is the air-flow velocity when the microactuator is
off (resp. on).

Constraint blocks are linked by a dependency relationship
expressing that changes in one model element (the supplier)
impact another model element (the client). A dependency
relationship can also represent precedence. For example the
equation in the blockConveyancemust be solved before that
in the block Horizontal dynamic, hence the dependency
relationship in Figure 8 between the two blocks.

E. Parametric Diagram

A Parametric Diagram(PD) is associated to a block and
makes use of constraint blocks, defined in a Block Definition
Diagram, as constrain properties for its owning block. It is
a new diagram type specific toSysML. Syntactically aPD
is similar to an IBD, with the restriction that connectors
are either between two constraint parameters or between a
constraint parameter and a parameter of the owning block.

Figure 9 shows the PD of the blockInterface, with
connectors between the four constraint blocks from Figure 8.
The parameters on the diagram edges are the concreteInter-
faceblock attributes. Except the gravitational constantg the
interface attributes either come from the surface (voff, va) or
from the conveyed object (massm, shape characterized by
length and thickness, position defined byposx andposz).

Figure 10 is the PD of themicroActuator block. Among
others it shows how the mathematical formula which ex-
presses the contact voltage (Vpull−in) is related to other
constraints and quantities. This constraint requires five input
parameters.lv is the length of vertical suspending beam,
keq is the spring stiffness,epsilon is the dielectric constant
of vacuum,h is the thickness of suspending beam, and
g0 is the initial gap between electrodes. These values may
either come from the external environment or from results of
other equations. TheVpullin block also provides the output
parametervpullin .

V. CONCLUSION AND PERSPECTIVES

We have presented a hierarchical modeling of a smart
surface withSysML. The first two levels are generic in the

Figure 9. Parametric diagram of the interface block

sense that they can be refined into any physical model of
intelligent conveying surface. As an example of possible re-
finement we have presentedSysMLdiagrams corresponding
to the distributed MEMS air-flow surface micromanipulator
from [1].

As SysML is a language, not a methodology, it can be
smoothly integrated in any existing design methodology and
can thus significantly improve the development process of
an organization. There is no need to do radical changes in
the current methodology, which would involve too many
risks. In additionSysMLis aUML-based language, which is
widely known and used, both in academia and industry. It
can also facilitate communication between all professionals
involved in a system design.

System modeling and simulation traditionally have been
performed using quite different tools, e.g., relatively infor-
mal graphical diagrams for system description, and formal
languages for simulation. The emergence ofSysML may
provide a way to create formal system models, and link
them directly to formal simulation languages asRosetta[8].
The potential for this approach is quite interesting, as it
would permit users to develop system models that could



Figure 10. Parametric diagram of the microactuator block

be automatically parsed into specific analysis models.
A perspective is to establish links betweenSysMLand

tools and technologies for modeling used to represent or
describe complex systems. In the field of complex systems,
engineers and researchers often useVHDL-AMS. We plan to
create the following links betweenSysMLandVHDL-AMS:

• GeneratingVHDL-AMScode fromSysMLdiagrams
• ExtractingSysMLdiagrams fromVHDL-AMScode
• Extending theSysML metamodel with VHDL-AMS

characteristics.

ACKNOWLEDGMENT

This work is supported by the ANR-06-ROBO-0009-03
projectSmart Surface.

REFERENCES

[1] Y.-A. Chapuis, L. Zhou, H. Fujita, and Y. Hervé, “Multi-
domain simulation using VHDL-AMS for distributed MEMS
in functional environment: Case of a 2D air-jet micromanipu-
lator,” Sensors and Actuators A: Physical, vol. 148, no. 1, pp.
224 – 238, 2008.

[2] L. Zhou, “ModélisationVHDL-AMSmulti-domaines de struc-
tures intelligentes, autonomes et distribuées à base de MEMS,”
Ph.D. dissertation, Institut d’Electronique du Solide et des
Systèmes, University of Strasbourg (France), 2007.

[3] L. Zhou, Y.-A. Chapuis, J.-P. Blondé, H. Berviller, Y. Fukuta,
and H. Fujita, “Integrated control strategy for autonomous
decentralized conveyance systems based on distributedMEMS
arrays,” inProc. SPIE, Smart Structures and Materials 2004:
Modeling, Signal Processing, and Control, R. C. Smith, Ed.,
vol. 5383, March 2004, pp. 498–506.

[4] E. Christen and K. Bakalar, “VHDL-AMS-A Hardware Descrip-
tion Language for Analog and Mixed-Signal Applications,” in
IEEE Trans. Circuits & Systems-II, vol. 46, no. 10, Oct 1999,
pp. 1263–1272.

[5] A. Hammad, H. Mountassir, and B. Tatibouet, “Using the pro-
file UML4SoCfor modeling a smart surface,” inICEEDT’08,
2nd int. conf. on Electrical Engineering Design and Technol-
ogy, Nov. 2008, proceedings on CD-ROM. 6 pages.

[6] R. Malik and R. Mühlfeld, “A case study in verification
of UML statecharts: the PROFIsafe protocol,” inProc. 5th
Workshop on Tools for System Design and Verification, FM-
TOOLS 2002, 2002, pp. 89–93.



[7] D. Drusinsky, Modeling and Verification usingUML State-
charts. Elsevier, 2006.

[8] P. Alexander and C. Kong, “Rosetta: Semantic support
for model-centered systems-level design,”IEEE Computer,
vol. 34, no. 11, pp. 64–70, 2001.


