
MlBibTEX: Reporting the Experience∗

Jean-Michel HUFFLEN
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
hufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

This article reports how the different steps of the MlBibTEX project were con-
ducted until the first public release. We particularly focus on the problems raised
by reimplementing a program (BibTEX) that came out in the 1980’s. Since this
time, implementation techniques have evolved, new requirements have appeared,
as well as new programs within TEX’s galaxy. Our choices are explained and
discussed.
Keywords TEX, LATEX, BibTEX, reimplementation, reverse engineering, im-
plementation language, program update.

Streszczenie

Artykuł omawia realizację poszczególnych kroków przedsięwzięcia MlBibTEX, w
czasie do przedstawienia pierwszej publicznej wersji. W szczególności skupiamy
się na problemach powstałych przy reimplementacji programu (BibTEX), powsta-
łego w latach 80 zeszłego wieku. Od tego czasu rozwinęły się techniki implemen-
tacyjne, powstały nowe wymagania oraz nowe programy w świecie TEX-owym.
Przedstawiamy i dyskutujemy dokonane wybory.
Słowa kluczowe TEX, LATEX, BibTEX, reimplementacja, reverse engineering ,
język implementacji, aktualizacja programu.

0 Introduction

In 2003, TEX’s 25th anniversary was celebrated at
the TUG1 conference, held at Hawaii [1]. LATEX
[28] and BibTEX [35]— the bibliography processor
usually associated with the LATEX word processor—
are more recent, since they came out in the 1980’s,
shortly after TEX. All are still widely used, such
longevity being exceptional for software. However,
these programs are quite ageing. Of course, re-
cent versions have incorporated many features ab-
sent from the first versions, what proves the robust-
ness of these systems. Nevertheless, they present
some limitations due to the original conception, and
a major reimplementation may be needed to inte-
grate some modern requirements. In addition, inter-
active word processors made important progress and
are serious rivals, even if they do not yield typeset-
ting of such professional quality. That is why some

∗ Title in Polish: MlBibTEX: raport z doświadczeń.
1 TEX Users Group.

projects aim to provide new programs, based on TEX
& Co.’s ideas.2 A first representative example is the
LATEX 3 project [32], a second is NTS [27].

MlBibTEX—for ‘MultiLingual BibTEX’—be-
longs to such projects. Let us recall that this pro-
gram aims to be a ‘better BibTEX’, especially about
multilingual features. For a end-user, MlBibTEX be-
haves exactly like ‘classical’ BibTEX: it searches bib-
liography data base (.bib) files for citation keys used
throughout a document and arranges the references
found into a .bbl file suitable for LATEX, w.r.t. a bib-
liography style. MlBibTEX is written in Scheme,3 it
uses XML4 as a central format: when entries of .bib

2 Concerning TEX, an additional point is that TEX’s de-
velopment has been frozen by its author, Donald E. Knuth
[26]. If incorporating new ideas to a ‘new TEX’ leads to a ma-
jor reimplementation, the resulting program must be named
differently.

3 The version used is described in [24].
4 EXtensible Markup Language. Readers interested in

an introductory book to this formalism can consult [37].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel HUFFLEN

files are parsed, they result in an XML tree. Bib-
liography styles taking advantage as far as possible
of MlBibTEX’s new features are written using nbst,5
a variant of XSLT6 described in [15]. The bst lan-
guage [34], based on handling a stack and used for
writing bibliography styles of BibTEX, can be used
in a compatibility mode [20].

We think that the experience we have got in
developing MlBibTEX may be useful for other anal-
ogous projects. In a first section, we briefly recall the
chronology of this development. As it could be seen,
this development has not been linear, and the two
next following sections focus on the problems we had
to face. We explain how we have determined which
criteria are accurate when a programming language
is to be chosen for such an application. Then we
show how the compatibility with ‘old’ data and the
integration of modern features should be managed.

1 MlBibTEX’s Chronology

Oct. 2000 MlBibTEX’s design begins: the syntax
of .bib files is enriched with multilingual anno-
tations. Version 1.1’s prototype is written using
the C programming language and tries to reuse
parts of ‘old BibTEX’s program as far as possi-
ble.

May 2001 The first article about MlBibTEX is [9].
Later, the experience of developing MlBibTEX’s
Version 1.1 is described in [10].

May 2002 By discussing with some people at the
EuroBachoTEX conference, we realise that the
conventions for bibliography styles are too di-
verse, even if we consider only those of Euro-
pean countries. We realise that this first ap-
proach is quite unsuitable, unless defining a new
version of the bst language. So we decide to ex-
plore two directions. First, we develop a ques-
tionnaire about problems and conventions con-
cerning bibliography styles used within Euro-
pean countries. Second, we begin a prototype
in Scheme implementing the bst language [11].
Initially, this prototype is devoted to experi-
ments about improving this language in a sec-
ond version (1.2).

Jan. 2003 Version 1.2 is stalled. The new version
(1.3) is built out of XML formats. The nbst lan-
guage is designed and presented at [12, 13]. We
explain in [14] how the results of our question-
naire have influenced this new direction.

Feb. 2004 It appears to us that MlBibTEX should
be developed using a very high-level program-

5 New Bibliography STyles.
6 eXtensible Language Stylesheet Transformations, the

language of transformations used for XML documents [43].

ming language, higher than C. So we consider
again the prototype in Scheme, we sketched in
2002. SXML7 [25] is chosen as the representa-
tion of XML texts in Scheme. Some parts of
MlBibTEX are directly reprogrammed from C
to Scheme. About the other parts, this proto-
type is a good basis for much experiment [16].

Nov. 2004 The version written in C is definitely
dropped out, whereas the version in Scheme is
adapted in order to get much efficency and be-
comes the ‘official’ MlBibTEX [18].

Sep. 2005 We decided to freeze MlBibTEX’s design
and concentrate only on finishing programming.
Many Scheme functions are rewritten in confor-
mity to SRFIs8 [39].

May 2006 A working version is almost finished,
except for the interface with the kpathsea li-
brary.

May 2007 Public availability of MlBibTEX’s Ver-
sion 1.3.
Besides, let us make precise that MlBibTEX is

not our only task. As an Assistant Professor in our
university, we teach Computer Science. We also
participate in other projects. As a consequence,
MlBibTEX’s development has been somewhat an-
archic: we hardly worked on it for two or three
months, put it aside for one or two months, and so
on. Last, we have supervised some student projects
about graphical tools around MlBibTEX [2, 8], pro-
grammed using Ruby [31], but concerning the devel-
opment of the MlBibTEX program itself, we have
done it alone.

2 Choice of an implementation language

There are several programming paradigms: impera-
tive, functional, and logic programming. There are
also several ways to implement a programming lan-
guage: interpretation and compilation. Some para-
digms are more accurate, according to the domain
of interest. Likewise, some interpreted languages
are more accurate if you want to program a pro-
totype quickly and are just interested in performing
some experiment.9 But compiled languages are of-
ten preferable if programs’ efficiency is crucial. Be-
sides, the level of a programming language has some
influence on development: in a high-level language,
low-level details of structures’ implementation do
not have to be made explicit, so development is

7 Scheme implementation of XML.
8 Scheme Requests for Implementation. That is an effort

to coordinate libraries and other additions to the Scheme lan-
guage between implementations.

9 That is the case for the graphical tools around
MlBibTEX programmed in Ruby by our students [2, 8].

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

MlBibTEX: Reporting the Experience

quickier, and programs that result in are more con-
cise, nearer to a mathematical model.

In addition to these general considerations, let
us recall that we aim to replace an existing program
by a new one. This new program is supposed to
do better than the ‘old’ one. ‘To do better’ may
mean ‘to have more functionalities, more expressive
power’, but for sake of credibility, it is preferable for
the new program to be as efficient as the ‘old’ one.
Let us not forget that TEX and BibTEX are written
using an old style of programming—more precisely,
a monolithic style used in the 1970’s–1980’s—based
on global variables mainly, without abstract data
types. Choosing a language implemented efficiently
is crucial: as a counter-example, NTS, written using
Java, has been reported 100 times slower than TEX
[42, § 5].

That is why we wrote MlBibTEX’s first ver-
sion using C, because of its efficiency. In addition,
this language is portable on most operating systems.
And to make our program modular, we defined pre-
cise rules for naming procedures [10, § 3]. But two
problems appeared.

First, MlBibTEX’s development has not been a
daily task, as abovementioned. Even if we are per-
sonally able to program large applications in C, it
was difficult to put aside a C program and resume it
later: from this point of view, C is not a very high-
level language. Besides, let us not forget that we
are working within an open domain, as natural lan-
guages are. Some change may be needed because of
new features concerning languages that had not yet
been integrated into MlBibTEX’s framework. The
higher the level, the more easy such change will be
applied.

Second, we want end-users of MlBibTEX to be
able to influence the behaviour of this program. For
example, many BibTEX users put LATEX commands
inside values associated with fields of .bib files, in or-
der to increase expressive power within bibliograph-
ical data. These users should be able to specify how
to handle such commands when .bib files are con-
verted into XML trees. In particular, that is useful if
MlBibTEX is used to produce outputs for other word
processors than LATEX [21]. How to do that in C?
unless defining a mini-language to express such func-
tions? In this case, using a script language is a bet-
ter choice . . . provided that this language is efficient.
Another choice is a Lisp10 dialect, as did in emacs
[40]: end-users can customise emacs’ behaviour by
expressions using the Emacs Lisp language [30]. This
choice is homogeneous: the whole of the emacs pro-

10 LISt Processor.

gram is expressed using Emacs Lisp, except for the
implementation of low-level functionalities.

Finally, our choice was Scheme, the modern di-
alect of Lisp. We confess that we are personally
attracted by functional programming languages, be-
cause they can abstract procedures as well as data:
in this sense, they are very high-level programming
languages. Concerning Scheme, it seems to us to be
undebatable that it has very good expressive power.
In addition, it allows some operations to be pro-
grammed ‘impurely’, by side effects, like in imper-
ative programming, in order to increase efficiency.
However, we use this feature parsimoniously, on lo-
cal variables, because it breaks principles of func-
tional programming. We have defined precise rules
for naming variables, as we did in C for the first ver-
sion, in order to emphasise the modular decomposi-
tion of our program [19]. Last but not least, Scheme
programs may be interpreted—when software is be-
ing developed—or compiled, in which case they are
more efficient. As a good example of Scheme im-
plementation, bigloo [38] compiles Scheme functions
by transforming them into C functions, then these
C functions are compiled, in turn.

If we compare the two developments in C and
Scheme, the latter is better, as it is expected from
a very high-level programming language. But pro-
gramming an application related to TEX using a lan-
guage other than C reveals a drawback: the kpathsea
library [3] is written in C. Let us recall that kpathsea
implements functions navigating through the TDS.11
In particular, such functions localise the files con-
taining the specification of a class for a LATEX doc-
ument or a bibliography style when BibTEX runs.
If there is a compatibility mode, for ‘old’ bibliogra-
phy styles written in bst, the functions of this com-
patibility mode should be able to localise such files,
too. Likewise, ‘new’ bibliography styles written in
nbst, should be localised by means of an analogous
method. This implies that the language—or, at
least, an implementation of the language—used for
our software includes an interface with C.

Of course, what we expose above proceeds from
general considerations. After all, we do not know
if BibTEX++ [4]—a successor of BibTEX based
on Java, bibliography styles are written in Java—
is very less efficient than BibTEX. This may not
be the case. The advantages of script languages in
such development appear if we consider Bibulus [45],
another successor of BibTEX, written using Perl.12
It has developed quickier than MlBibTEX, but is

11 TEX Directory Structure.
12 Practical Extraction Report Language. A didactic in-

troduction to this language is [44].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel HUFFLEN

‘less’ multilingual and uses BibTEX when it runs.
That is, Bibulus does not replace BibTEX wholly, as
MlBibTEX attempts to do. In addition, there is an
example where the need of a programming language
with higher level than C appeared: the project of
moving Ω—a successor of TEX—into a C++ plat-
form [36].

We personally think that an implementation of
NTS in Common Lisp [41]—what was planned ini-
tially—would have been preferable. As mentioned
in [46], the object-oriented features of Common Lisp
(CLOS13) have been added to the language’s basis—
like C++ object-oriented functionnalities have been
added to C—but the language itself is not actu-
ally object-oriented. In [46], this point is viewed as
a drawback. First, we personally think that every-
thing is not an object, from a point of view related
to conception. Second, Common Lisp, even if it is a
functional programming language, allows some op-
erations to be performed more efficiently by means
of side effects, like Scheme.14 But Common Lisp’s
standard does not specify an interface with C, like
Scheme’s, although some implementations provide
this service. However, we personally prefer Scheme,
simpler and more modern.

3 Choice of strategy

3.1 Languages

TEX & Co. have been wonderful programs since the
date they came out. However, they behave very
nicely, but syntaxes are quite archaic. TEX’s is not
homogeneous—although LATEX2ε and LATEX 3 [32]
try to correct this point— fro example, different de-
limitations are used to change size (‘{\small ...}’)
or face (‘\textbf{...}’). BibTEX’s syntax suffers
from lack of expressive power: for example, the only
way to put a brace within a field’s value is to give
its code number by ‘\symbol{...}’. ‘Semantically’,
TEX’s language provides many intelligent features,
as mentionned in [6], but does not meet a modern
style of programming. Likewise, .bib files’ syntax
can express only ‘verbatim’ values, except for some
‘tricks’ like inserting some ‘-’ characters for a range
of page numbers. The specification of stuctured val-
ues like person or organisation names is easy for
simple cases, but quickly becomes obscure in more
complicated cases [22].

In addition, new syntaxic sugar may be needed
to meet some new requirements. As an example, [23]
points out that the arguments of some macros—
e.g., \catcode—are not easily parseable. As an-

13 Common Lisp Object System.
14 Emacs Lisp, too, and the programs of emacs largely use

this feature.

other example, the ConTEXt format [7] put good
settlement into action for an homogeneous expres-
sion of setup commands, by means of ‘key=value ’
syntax:
\setuplayout[backspace=4cm,topspace=2.5cm]

Nevertheless, is it reasonable to add more and more
syntactic sugar to such old-fashioned syntax? Would
the definition of new languages not be preferable?
Of course, the present languages of TEX and BibTEX
will still remain to be used, due to the huge num-
ber of files using them and developed by end-users.
But if a new language is designed, it should be-
come the usual way to deal with the new program.
Of course, end-users will have to get used with the
new language. But that can be done progressively
and some synergy between developers and users may
cause this new language to be improved if need be.

In addition, let us remark that in our case, the
new language for bibliography styles (nbst) is close
to XSLT, so we think that users familiar with the
former can get used to the latter easily.

3.2 New services

Now it is admitted that composite tasks are not to
be done by a monolithic program, but by means of
a cooperation among several programs. From this
point of view, the cooperation between LATEX and
BibTEX is exemplar. But BibTEX is too strongly
related to LATEX. BibTEX can be used to build bib-
liography for ConTEXt documents, but because this
word processor belongs to TEX family. On the con-
trary, writing a converter from BibTEX to HTML15

by means of the bst language is impossible with-
out loss of quality: for example, the unbreakable
space character is represented by ‘~’—as in TEX—
when names are formatted [22], and this convention
cannot be changed.16 We see that such problems
can be avoided by considering an XML-like language
as a central format. In our case, generating bibli-
ographies according to other formats than LATEX’s
should be easy since the LATEX commands end-users
put into .bib files are removed when these files are
parsed. This point is detailed in [17, 21].

4 Conclusion

Last but not least, we have enjoyed to design and im-
plement MlBibTEX, even if this development back-
tracked several times. In addition, we think that this
development shows the difficulties related to such a

15 HyperText Markup Language. Readers interested in
an introduction to this language can refer to [33].

16 In fact, there are such converters, an example being
BibTEX2HTML [5], written using Objective Caml [29], a func-
tional programming language.

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

MlBibTEX: Reporting the Experience

task. Two parts have to be managed in parallel. The
first part is reverse engineering, that is, guessing the
conception from the program. The second: enlarg-
ing what already exists. In comparison with ‘clas-
sical’ development of a new program from scratch,
tests concerning the compatibility mode are easy to
perform: just comparing what is given by the two
programs, the ‘old’ one becoming an oracle. But
reaching homogeneous conception is not obvious if
we want to keep backward compatibility. Neverthe-
less, we hope that we have done some satisfactory
work.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
written the Polish translation of the abstract.

References

[1] William Adams, ed.: TUG 2003 Proceedings,
Vol. 24:3. TUGboat. July 2003.

[2] Cédric Bassetti and Christian Bon: Inter-
active Specification of bibliography styles for
MlBibTEX. Report of student project. Univer-
sity of Franche-Comté. May 2006.

[3] Karl Berry and Olaf Weber: Kpathsea li-
brary for Version 3.3.7. November 2001. Part
of LATEX’s distribution.

[4] Emmanuel Donin de Rosière: From
Stack Removing in Stack-Based Languages to
BibTEX++. Master’s thesis, ENSTBr, Brest.
2003.

[5] Jean-Christophe Filliâtre and Claude
Marché: The BibTEX2HTML Home Page.
June 2006. http://www.lri.fr/~filliatr/
bibtex2html/.

[6] Jonathan Fine: “TEX as a Callable Func-
tion”. In: EuroTEX 2002, pp. 26–30. Bachotek,
Poland. April 2002.

[7] Hans Hagen: ConTEXt, the Manual. Novem-
ber 2001. http://www.pragma-ade.com/
general/manuals/cont-enp.pdf.

[8] Stéphane Henry and Jérôme Voinot: Inter-
face for MlBibTEX. Getting Bibliographical En-
tries Interactively. Report of student project.
University of Franche-Comté. May 2005.

[9] Jean-Michel Hufflen : « Vers une extension
multilingue de BibTEX ». Cahiers GUTenberg,
Vol. 39–40, p. 23–38. In Actes du Congrès GU-
Tenberg 2001, Metz. Mai 2001.

[10] Jean-Michel Hufflen: “Lessons from a Bib-
liography Program’s Reimplementation”. In:
Mark van den Brand and Ralf Lämmel,
eds., LDTA 2002, Vol. 65.3 of ENTCS. Elsevier,
Grenoble, France. April 2002.

[11] Jean-Michel Hufflen: Interaktive BibTEX-
Programmierung. DANTE, Herbsttagung 2002,
Augsburg. Oktober 2002.

[12] Jean-Michel Hufflen: Die neue Sprache für
MlBibTEX. DANTE 2003, Bremen. April 2003.

[13] Jean-Michel Hufflen: “Mixing Two Bibliogra-
phy Style Languages”. In: Barrett R. Bryant
and João Saraiva, eds., LDTA 2003, Vol. 82.3
of ENTCS. Elsevier, Warsaw, Poland. April
2003.

[14] Jean-Michel Hufflen: “European Bibliogra-
phy Styles and MlBibTEX”. TUGboat, Vol. 24,
no. 3, pp. 489–498. EuroTEX 2003, Brest,
France. June 2003.

[15] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262. July
2003.

[16] Jean-Michel Hufflen: “A Tour around
MlBibTEX and Its Implementation(s)”. Biule-
tyn GUST, Vol. 20, pp. 21–28. In BachoTEX
2004 conference. April 2004.

[17] Jean-Michel Hufflen: “MlBibTEX: be-
yond LATEX”. In: Apostolos Syropoulos,
Karl Berry, Yannis Haralambous, Baden
Hugues, Steven Peter and John Plaice,
eds., International Conference on TEX, XML,
and Digital Typography, Vol. 3130 of LNCS,
pp. 203–215. Springer, Xanthi, Greece. August
2004.

[18] Jean-Michel Hufflen: Beschreibung der
MlBibTEX-Implementierung mit Scheme.
DANTE 2004, Herbsttagung, Hannover.
Oktober 2004.

[19] Jean-Michel Hufflen: “Implementing a Bibli-
ography Processor in Scheme”. In: J. Michael
Ashley and Michel Sperber, eds., Proc. of the
6th Workshop on Scheme and Functional Pro-
gramming, Vol. 619 of Indiana University Com-
puter Science Department, pp. 77–87. Tallinn.
September 2005.

[20] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006 con-
ference. April 2006.

[21] Jean-Michel Hufflen: “MlBibTEX Meets
ConTEXt”. TUGboat, Vol. 27, no. 1, pp. 76–
82. EuroTEX 2006 proceedings, Debrecen, Hun-
gary. July 2006.

[22] Jean-Michel Hufflen: “Names in BibTEX and
MlBibTEX”. TUGboat, Vol. 27, no. 2, pp. 243–
253. TUG 2006 proceedings, Marrakesh, Mo-
rocco. November 2006.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1005

Jean-Michel HUFFLEN

[23] David Kastrup: “Designing an Implementa-
tion Language for a TEX Successor”. In: Proc.
EuroTEX 2005, pp. 71–75. February 2005.

[24] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson, Nor-
man I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris Han-
son, Christopher T. Haynes, Eugene Edmund
Kohlbecker, Jr, Donald Oxley, Kent M.
Pitman, Guillermo J. Rozas, Guy Lewis
Steele, Jr, Gerald Jay Sussman and Mitchell
Wand: “Revised5 Report on the Algorithmic
Language Scheme”. HOSC, Vol. 11, no. 1, pp. 7–
105. August 1998.

[25] Oleg E. Kiselyov: XML and Scheme. Septem-
ber 2005. http://okmij.org/ftp/Scheme/
xml.html.

[26] Donald Ervin Knuth: “The Future of TEX and
METAFONT”. TUGboat, Vol. 11, no. 4, pp. 489.
December 1990.

[27] Joachim Lammarsch: “The History of NTS”.
In: EuroTEX 1999, pp. 228–232. Heidelberg
(Germany). September 1999.

[28] Leslie Lamport: LATEX: A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[29] Xavier Leroy, Damien Doligez, Jacques
Garrigue, Didier Rémy and Jéróme Vouil-
lon: The Objective Caml System. Re-
lease 0.9. Documentation and User’s Man-
ual. 2004. http://caml.inria.fr/pub/docs/
manual-ocaml/index.html.

[30] Bill Lewis, Dan LaLiberte, Richard M.
Stallmand and the GNU Manual Group:
GNU Emacs Lisp Reference Manual for Emacs
Version 21. Revision 2.8. January 2002.
http://www.gnu.org/software/emacs/
elisp-manual/.

[31] Yukihiro Matsumoto: Ruby in a Nutshell.
O’Reilly. English translation by David L.
Reynolds, Jr. November 2001.

[32] Frank Mittelbach and Rainer Schöpf: “To-
wards LATEX 3.0”. TUGboat, Vol. 12, no. 1,
pp. 74–79. March 1991.

[33] Chuck Musciano and Bill Kennedy: HTML
& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[34] Oren Patashnik: Designing BibTEX Styles.
February 1988. Part of the BibTEX distribu-
tion.

[35] Oren Patashnik: BibTEXing. February 1988.
Part of the BibTEX distribution.

[36] John Plaice and Paul Swoboda: “Moving
Omega to a C++-Based Platform”. Biuletyn
Polskiej Grupy Użytkowników Systemu TEX,
Vol. 20, pp. 3–5. In BachoTEX 2004 conference.
April 2004.

[37] Erik T. Ray: Learning XML. O’Reilly & Asso-
ciates, Inc. January 2001.

[38] Manuel Serrano: Bigloo. A Practical Scheme
Compiler. User Manual for Version 2.9a. De-
cember 2006.

[39] Scheme Requests for Implementation. February
2007. http://srfi.schemers.org.

[40] Richard M. Stallman: GNU emacs Man-
ual. January 2007. http://www.gnu.org/
software/emacs/manual/.

[41] Guy Lewis Steele, Jr., with Scott E.
Fahlman, Richard P. Gabriel, David A.
Moon, Daniel L. Weinreb, Daniel Gureasko
Bobrow, Linda G. DeMichiel, Sonya E.
Keene, Gregor Kiczales, Crispin Perdue,
Kent M. Pitman, Richard Waters and Jon L
White: Common Lisp. The Language. Second
Edition. Digital Press. 1990.

[42] Philip Taylor, Jiři Zlatuška and Karel Sk-
oupý: “The NTS Project: from Conception to
Implementation”. Cahiers GUTenberg, Vol. 35–
36, pp. 53–77. May 2000.

[43] W3C: XSL Transformations (XSLT). Ver-
sion 1.0. W3C Recommendation. Edited by
James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xslt-19991116.

[44] Larry Wall, Tom Christiansen and Jon Or-
want: Programming Perl. 3rd edition. O’Reilly
& Associates, Inc. July 2000.

[45] Thomas Widman: “Bibulus—a Perl XML Re-
placement for BibTEX”. In: EuroTEX 2003, pp.
137–141. ENSTB. June 2003.

[46] Jiři Zlatuška: “NTS: Programming Lan-
guages and Paradigms”. In: EuroTEX 1999,
pp. 241–245. Heidelberg (Germany). September
1999.

1006 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

