
Model updating of locally nonlinear systems based on Multi-
harmonic Extended Constitutive Relation Error

I. Isasa1, A. Hot2, S. Cogan2, E. Sadoulet-Reboul2

1 Orona, Department of Mechanical Engineering,
Pol. Lastaola, 20120, Hernani, Spain
2 FEMTO-ST Institute, Structural Dynamics Research Group,
Rue de l’Epitaphe 24, 25000, Besançon, France
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Abstract
Improving the fidelity of numerical simulations using available test data is an important activity in the overall
process of model verification and validation. While model updating or calibration of linear elastodynamic
behaviors has been extensively studied for both academic and industrial applications over the past three
decades, methodologies capable of treating nonlinear dynamics remain relatively immature. The authors
propose a novel strategy for updating an important subclass of nonlinear models characterized by globally
linear stiffness and damping behaviors in the presence of local nonlinear effects. Existing nonlinear updating
strategies are based on the Response Force Surface (RSF), Proper Orthogonal Decomposition (POD), or first-
order Harmonic Balance (HB) methods. With the exception of the RFS approach, these methods introduce
some form of linearization and this naturally limits their application to relatively weak nonlinear effects. As
for the RFS approach, its major weakness lies in the fact that it requires that the structural responses be mea-
sured on all model degrees-of-freedom where significant nonlinear effects are present. In this paper, a novel
methodology is presented which effectively combines two well-known methods for structural dynamic anal-
ysis: the Multi-harmonic Balance method for calculating the periodic response of a nonlinear system and the
Extended Constitutive Relation Error method for establishing a well-behaved metric for modeling and test-
analysis errors. The proposed methodology neither requires any linear approximation nor the observation
of all nonlinear degrees-of-freedom. The advantages and limitations of the proposed nonlinear updating
strategy will be illustrated based on an academic example.

1 Introduction

Nonlinear phenomena are commonplace in mechanical systems containing mechanisms, joints and contact
interfaces [1]. Engineers often simplify the behavior of complex structural models by considering them to be
linear for dynamic analyses, thus neglecting nonlinear effects due to large displacements, contact, clearance
and impact phenomena, among others.

The following paper is devoted to the revision of nonlinear models in the field of structural dynamics based
on measured responses. During the past two decades, linear model updating has been extensively studied
to improve the accuracy of simulations [2]. Nonlinear model updating techniques on the other hand have
received much less attention. Both time domain or frequency domain approaches can be found in the litera-
ture. In the time domain, the Restoring Force Surface method (RFS) and Proper Orthogonal Decomposition
(POD) are described in detail in the overview paper by Kerschen et al. [3] with complete references to the
literature. More recently, Gondhalekar et al. has proposed a strategy combining the RFS method with model
reduction [4]. In the frequency domain, Böswald and Link [5] have developed a methodology based on the
first order Harmonic Balanced method to get a suitable representation of nonlinear effects and they have
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applied their approach to update nonlinear joint parameters in complex structural assemblies. Another fre-
quency domain method is investigated by Puel [6] where the Extended Constitutive Relation Error (ECRE)
for linear dissipative systems is generalized to nonlinear model updating with a first order harmonic balance
approximation. With the exception of the RFS method, the existing methods for nonlinear updating are based
on some form of linearization and this naturally limits their application to relatively weak nonlinear effects.
As for the RFS approach, its major weakness lies in the fact that it requires that the structural responses be
measured on all model degrees-of-freedom where significant nonlinear effects are present.

In this paper, a novel methodology is presented which effectively combines the Multi-harmonic Balance
method for calculating the periodic response of a nonlinear system and the Extended Constitutive Relation
Error method for establishing a well-behaved metric for modeling and test-analysis errors. The proposed
approach is not based on any linear approximations and does not require the observation of all nonlinear
degrees-of-freedom.

2 Mathematical formulation

2.1 Equations of motion

The equations of motion of a discrete linear structure can be written:

Mq̈(t) + Cq̇(t) +Kq(t) = p(t) (1)

where, K,M,C ∈ <N,N are respectively the symmetric stiffness, mass and damping matrices, with the
stiffness matrix assumed to be non-negative definite; p(t) ∈ <N,1 is a vector of external forces; q(t) ∈ <N,1

is the vector of time responses on the N degrees-of-freedom (dofs).

The equation of motion of a nonlinear structure can be written in the same way as a linear structure with the
addition of a nonlinear term, fNL(q(t), q̇(t)) ∈ <N,1, which can depend on the system displacements and
velocities:

Mq̈(t) + Cq̇(t) +Kq(t) + fNL(q(t), q̇(t)) = p(t) (2)

The origin of these nonlinear forces can be quite diverse, including:

• Some large displacement systems, for example the classical pendulum.

• Material nonlinearities including locally plastic or viscoplastic behaviors, shape memory alloys, and
so on.

• Local interface nonlinearities including Hertz contact, dry friction, intermittent contact or clearance
phenomena.

The response of a nonlinear system can be qualitatively very different from a linear one. In a linear system
the steady-state response to a periodic excitation is at the same frequency as the excitation force once the
transient term vanishes in time and is independent of the initial conditions. The periodic response of a
nonlinear system, when it exists, generally exhibits primary and secondary resonances and may depend on
the initial conditions [7].

Although transient behavior may be important, the study of periodic solutions and their stability remains
essential to capture the behavior of a vibrating system. Nonlinear time domain simulations are extremely
burdensome especially when they are used to calculate the steady state response of large-order models. The
Multi-harmonic Balance method is based on a Fourier series approximation and was developed with the
objective of solving the periodic response of nonlinear systems more efficiently.
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2.2 Multi-harmonic balance method

The MHB method is a frequency domain approach developed to solve equation (2) for a periodic excitation.
Many extensions to the first-order harmonic balance approach to include higher harmonics were developed
in the 1980’s, for example [8] or [9]. We have based our developments on the formulation proposed by
Cardona et al. [10] and more recently applied to complex industrial structures with contact effects by Petrov
et al., [11].

The equilibrium equation of a nonlinear system of N degrees-of-freedom is given by equation (2). Expres-
sing the vector of time responses q(t) as a Fourier series yields:

q(t) = Q0 +
n∑

j=1

(
Qc

j cosmjωt+Qs
j sinmjωt

)
(3)

where:

• Q0 represents the constant or static contribution

• Qc
j and Qs

j are respectively the jth cosine and sine coefficients of the Fourier series

• mj expresses the harmonic of the excitation frequency ω

Introducing this expression into equation (2) yields:

K

Q0 +
n∑

j=1

Qc
j cosmjωt+Qs

j sinmjωt

+

C

 n∑
j=1

−mjω Q
c
j sinmjωt+mjω Q

s
j cosmjωt

+

M

 n∑
j=1

−(mjω)2 Qc
j cosmjωt− (mjω)2 Qs

j sinmjωt

+

f(q(t), q̇(t))− p(t) = 0

(4)

A Galerkin procedure is then applied by sequentially pre-multiplying equation (4) by the harmonic functions
(1, cosωt, sinωt, cosm1ωt, . . . , cosmnωt, sinmnωt) and integrating over the period T = 2π/ω.

Regrouping the resulting equations for each harmonic in the Fourier expansion, the following frequency
domain expression can be obtained:

Z(ω)Q+ F(Q)− P = 0 (5)

where Q = {Q0 ; Q1 ; Q2 ; · · · ; Q2n−1 ; Q2n} is the vector of harmonic coefficients with Qi ∈ <N,1.
The matrix Z ∈ <(2n+1)N,(2n+1)N is given by:

Z =

K 0 0 · · · 0 0
0 K − (m1ω)2M m1ωC · · · 0 0
0 −m1ωC K − (m1ω)2M · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · K − (mnω)2M mnωC
0 0 0 · · · −mnωC K − (mnω)2M


(6)
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and the vectors F ;P ∈ <(2n+1)N,1 corresponding respectively to the nonlinear forces and the external
excitations are given by:

F =



∫ T

0
fNL(q(t), q̇(t)) dt

ω

π

∫ T

0
fNL(q(t), q̇(t)) cosωt dt

ω

π

∫ T

0
fNL(q(t), q̇(t)) sinωt dt

...
ω

π

∫ T

0
fNL(q(t), q̇(t)) cosmnωt dt

ω

π

∫ T

0
fNL(q(t), q̇(t)) sinmnωt dt



(7)

and

P =



∫ T

0
p(t) dt

ω

π

∫ T

0
p(t) cosωt dt

ω

π

∫ T

0
p(t) sinωt dt

...
ω

π

∫ T

0
p(t) cosmnωt dt

ω

π

∫ T

0
p(t) sinmnωt dt



(8)

Remarks

• Equations (7) and (8) demonstrate the time-frequency character of the MHB algorithm where it is
generally much easier to evaluate the forces in the time domain and then transform back into the
frequency domain.

• Equation (5) is generally solved using a predictor-corrector continuation scheme in order to follow the
distorsions of the corresponding frequency responses [12].

• Model reduction can be used effectively for the linear system matrices in order to reduce the compu-
tational burden for very large models.

2.3 Extended Constitutive Relation Error

The Constitutive Relation Error was initially proposed by Ladavèze et al. in the early 1980s as an error
estimator for finite element models [13]. An extended version for use in model updating was described in the
early 1990s [14] taking into account both modeling error and test-analysis errors for linear elastodynamic
behaviors. A discrete formulation of the approach for dissipative linear structures can be found in [15].
The basic philosophy of the ECRE methodology consists in dividing the relations of interest (constitutive
behavior laws, equations of motion, measured displacements, initial conditions, etc.) into two groups: the
reliable and the less reliable quantities. The solution to the problem is sought so as to satisfy the reliable
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equations exactly while minimizing the errors in the less reliable equations. The present paper will be
restricted to nonlinear elastodynamic systems which contain only nonlinear stiffness errors. Extensions
to nonlinear dissipative effects as well as combined errors in both linear and nonlinear properties can be
formulated in an analogous manner.

LetQω and Vω be two admissible displacement fields of equation (5) and D2(Qω,Vω) a measure of distance
between the two vectors such that:

D2(Qω,Vω) = ‖Qω − Vω‖2K ≡ (Qω − Vω)TK(Qω − Vω) (9)

where, K ∈ <(2n+ 1)N, (2n+ 1)N is the multi-harmonic stiffness matrix corresponding to the linear
system defined by:

K =



K 0 0 · · · 0 0
0 K 0 · · · 0 0
0 0 K · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · K 0
0 0 0 · · · 0 K

 (10)

A multi-harmonic ECRE can be defined for nonlinear stiffness errors in the following way:

E2
ω = rT

ωKrω + α (HQω −Qe
ω)T KR (HQω −Qe

ω) (11)

where,

• rω ≡ Qω − Vω, with Qω ∈ <(2n+1)N,1 and Vω ∈ <(2n+1)N,1 two admissible displacement fields for
multi-harmonic equation of motion equation (5).

• Qe
ω ∈ <(2n+1)ne,1 is the vector of identified harmonic coefficients on the ne measurement degrees-of-

freedom.

• H ∈ <(2n+1)ne,(2n+1)N is a projection matrix allowing the model responses Qω to be projected onto
the set of ne measurement directions so as to account for the limited number of measurement dofs and
any differences in local reference frames between the FE model and the experimental model.

• KR ∈ <(2n+1)ne,(2n+1)ne is the multi-harmonic stiffness matrix of the linear system reduced to the
measurement degrees-of-freedom. In practice, the Guyan stiffness matrix is generally used.

• α is a real positive scalar allowing the relative confidence in the identified harmonic coefficients to be
taken into account.

Equation (11) is composed of two terms. The first term is a measure of the modeling error whereas the
second term is a measure of the distance between the experimentally identified harmonic coefficients and
those predicted by the model. Both of these terms correspond to the less reliable quantities in the present
ECRE formulation. The reliable quantities correspond to the equilibrium equations of the system expressed
by equation (5).

Therefore, the minimization problem to be solved in this case is given by:

{
Minimize E2

ω = rT
ωKrω + α ‖HQω −Qe

ω‖2KR

Under the constraint Krω = Z(ω)Qω + F − P (12)

or again:
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min g = rT
ωKrω + α(HQω −Qe

ω)TKR(HQω −Qe
ω) + γT (Krω − Z(ω)Qω −F + P) (13)

where g is the objective function and γ ∈ <(2n+1)N,1 is a vector of Lagrange multipliers.

The stationarity conditions require:

∂g

∂rω
= 0 ⇒ K(2rω + γ) = 0

∂g

∂Qω
= 0 ⇒ −Z(ω)γ − ∂F

∂Qω
γ + 2αHTKR(HQω −Qe

ω) = 0

∂g

∂γ
= 0 ⇒ Krω −Z(ω)Qω −F + P = 0

(14)

Eliminating γ and regrouping the equations yields the following nonlinear matrix equation: Z(ω) +
∂F
∂Qω

αHTKRH

K −Z(ω)

{ rω
Qω

}
+
{

0
−F

}
=
{
αHTKRQe

ω

−P
}

(15)

Remarks

• Equation (15) requires the solution of a nonlinear system of order 2N(2n+ 1). It can be solved with
a classical Newton-Raphson iterative procedure.

• The solution of equation (15) comprises two unknown vectors. First, the residual vector rω represents
the displacement field resulting from the unbalanced forces in the multi-harmonic equations of motion
and provides the basis for calculating the modeling error. Second, the response vector Qω represents
the experimental multi-harmonic response expanded onto all model dofs and provides a means for
evaluating the test-analysis distances.

• Given the vectors rω and Qω, the total MHB-ECRE error equation (11) for the point in model space
defined by the nominal linear system matrices and the nominal nonlinear model used to estimate the
multi-harmonic nonlinear forces can now be evaluated.

• The model updating problem finally consists in minimizing the total MHB-ECRE error over the space
defined by coefficients of the nonlinear model.

• Qe
ω represents the vector of experimentally identified harmonic coefficients. It is obtained directly

from the experimentally observed time responses via the Fast Fourier Transform (FFT) [16]:

Qc
j =

1
Np

Np−1∑
k=0

q(k) cos
(

2π
Np

kj

)
(16)

Qs
j =
−i
Np

Np−1∑
k=0

q(k) sin
(

2π
Np

kj

)
(17)

where, Np is the number of points per period and i is the imaginary number.

• Model reduction can again be effectively used here to minimize memory requirements and calculation
times.
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3 Example

The proposed methodology will be illustrated on a simulated academic example based on the COST action
F3 project benchmark [17]. The model consists in a clamped linear beam attached to a thinner beam at one
end. The main beam has a length of 0.7 m and a thickness of 0.014 m, whereas the thin beam has a length
of 0.04 m with a thickness of 0.0005 m. Both beams have a width of 0.014 m and the material of both of
them is steel with a Young’s modulus of 210 GPa and a Poisson ratio of 0.3. The structure is excited at node
number 3 (see Figure 1) with a stepped sine excitation having an amplitude of 2. This amplitude level was
chosen based on the results of [3] in order to insure a large enough deflection for nonlinear effects to come
into play.

 !""#$%&'%()* '+',*-(+ *.'-/"*

The proposed methodology will be illustrated on a simulated academic example based on the COST action F3
project benchmark [17]. The model consists in a clamped linear beam attached to a thinner beam at one end.
The main beam has a length of 0.7 m and a thickness of 0.014 m, whereas the thin beam has a length of 0.04
m with a thickness of 0.0005 m. Both beams have a width of 0.014 m and the material of both of them is steel
with a Young’s modulus of 2.11E11 MPa and a Poisson ratio of 0.3.

The structure is excited at node number 3 (see Figure 1) with a stepped sine excitation having an amplitude of
2. This amplitude level was chosen based on the results of [3] in order to insure a large enough deflection for
nonlinear effects to come into play.

As stated in [3] and [18], the nonlinear behavior appears mainly in the first mode (30.76 Hz). A grounded
cubic stiffness is introduced at node number 8 with the goal of modeling these nonlinearities. Moreover, in this
example the influence of this cubic nonlinearity is studied only for the first mode and for the first harmonic. The
nominal value of the nonlinear coefficient was chosen to be 6.1 109 N/m [18].

The FRF is calculated between the excitation point (node 3) and the response point (node 8) and plotted in
Figure 2 in order to visualize the distortion resulting from the nonlinear effects.
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In order to apply the nonlinear model updating procedure based on the MBH-ECRE approach the values of
the experimental vector of harmonic coefficients contained in Qe

ω are needed. In this paper they are obtained
numerically using a Newmark algorithm developed based on [19] followed by a FFT analysis.

In order to illustrate the advantages and limitations of the proposed nonlinear updating strategy, it will be applied
in three different simulated test configurations. In all three configurations, three excitation frequencies will be
investigated corresponding to different response levels and thus different degrees of nonlinearity. The objective

Figure 1: CostF3 beam

As stated in [3] and [18], the nonlinear behavior appears mainly in the first mode (30.76 Hz). A grounded
cubic stiffness is introduced at node number 8 with the goal of modeling these nonlinearities. Node number
13 is placed in the same location as node 8. These two nodes are constrained to have the same translational
displacements while a rotational spring is placed between their in-plane rotational dof. Moreover, in this
example the influence of this cubic nonlinearity is studied only for the first mode. The nominal value of the
nonlinear coefficient was chosen to be 6.1 109 N/m [18].

The FRF is calculated between the excitation point (node 3) and the response point (node 8) and plotted
in Figure 2(a) in order to visualize the distortion resulting from the nonlinear effects. Figure 2(b) displays
the FFT of the time response of node 8 to a 32 Hz sine excitation. A peak at the fundamental frequency is
observed as well as the 3rd (96 Hz) and 5th (160 Hz) harmonics. The 7th harmonic (224 Hz) is also present
but barely visible.
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(a) FRF between the excitation point (node 3) (b) FFT of node 8 time response
and the response point (node 8) for a 32Hz excitation

Figure 2: Frequency domain responses of the beam

In this example, the experimental vector of harmonic coefficients contained inQe
ω are simulated numerically

using a Newmark algorithm based on [19] followed by a FFT analysis.

In order to illustrate the advantages and limitations of the proposed nonlinear updating strategy, it will be
applied in four different simulated test configurations. Three excitation frequencies will be investigated
corresponding to different response levels and thus different degrees of nonlinearity. The objective here is
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simply to examine the shape of the error expressed by equation (11) as a function of a single nonlinear model
parameter. To simplify the interpretation of the results, the experimental harmonic coefficients have been
generated based on the nominal nonlinear model. As such, in what follows it is expected to see a minimum
in the MHB-ECRE curve at a value of the correction coefficient that multiplies the nonlinear stiffness (KNL)
equal to 1. The number of harmonics taken into account in the MHB-ECRE procedure will also be studied
here.

Test case 1: Verification of the implemented algorithm

The objective of this first configuration is simply to verify the implemented MHB-ECRE algorithm. In this
case, all model degrees of freedom (dofs) have been measured, that is to say, all 21 dofs (10 translations and
11 rotations) of the beam in Figure 1 are observed. Figure 3 plots the results of the MHB-ECRE updating
procedure. In the case where the fundamental, the 3rd, 5th and 7th harmonics are taken into account, in
Figure 3(a), the MHB-ECRE curves are, as expected, minimum for a correction coefficient equal to 1. In
Figures 3(b) and 3(c), where the 7th and 7th +5th harmonics are respectively removed from the MHB-ECRE
calculation, the results still give a good estimation of the nonlinear parameter. In the case where only the
fundamental contribution is retained, in Figure 3(d), the procedure is still accurate for frequencies 32 Hz and
30 Hz, whereas for 28 Hz the minimum value is slightly overestimated. It can be noted that all three curves
are convex, which is an advantage in finding the minimum of the MHB-ECRE function.
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Figure 3: Complete model and 21 dofs measured : MHB-ECRE results
— 28 Hz, - - - 30 Hz, . . . 32 Hz
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Test case 2: Impact of a reduced set of measurement dofs

The second case aims at illustrating the impact of observing only a subset of a model dofs. In the present case,
only 4 translations are assumed to be measured corresponding to nodes 3, 4, 6 and 8. The model reduction
has been performed based on the static Guyan procedure [20]. Finally, the model dof corresponding to the
nonlinear cubic spring is assumed to be included in the set of observed dofs. The comparison between the
results of the MHB-ECRE for the three different excitation frequencies, taking into account the fundamental
contribution only and the fundamental plus the three first odd harmonics, are plotted in Figure 4(a) and
Figure 4(b), respectively. The curves are still convex in both cases. However, in Figure 4(b), the nonlinear
parameters are now underestimated although the MHB-ECRE curve for the highest excitation frequency
(corresponding to the highest response amplitude and thus the largest nonlinear effect) still has a minimum at
very nearly 1. These shifts are due to the fact that the Guyan reduction is no longer an exact representation of
the dynamics of the linear system. However, as the nonlinear effects increase in magnitude, this discrepancy
becomes less and less important. Moreover, a compensation effect between errors due to model reduction
and the loss of information due to harmonic truncation can be observed in the results at 28 Hz. Indeed,
the model reduction tends to shift the minimum to the left while the harmonic truncation tends to shift the
minimum to the right.
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Figure 4: 4 dofs reduced model and 4 dofs measured : MHB-ECRE results
— 28 Hz, - - - 30 Hz, . . . 32 Hz

Test case 3: Impact of a lack of measurements on nonlinear dofs

This third case aims at illustrating a very important characteristic of the proposed updating strategy, namely
that it is not necessary to experimentally observe the model degrees-of-freedom corresponding to the location
of the nonlinear physics (the translational displacement at node 8 in this example). The same reduced system
matrices as in the previous test case are retained, but it is assumed that the displacement of node 8 is no
longer available. The results are plotted in Figure 5 and are qualitatively similar to those of the previous test
case. That means that the measurement of the nonlinear dof is not required for an accurate estimation of the
nonlinear coefficient.

Test case 4: Impact of the quality of the reduction model

The goal of this last test case is to understand the shift in the MHB-ECRE curves observed between test
case 1 and 2, that is to say, between a complete model and a reduced model. Indeed, an indicator is clearly
required to quantify the relative impacts of model reduction errors and nonlinear effects. In this case, a 2
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Figure 5: 4 dofs reduced model and 3 dofs measured : MHB-ECRE results
— 28 Hz, - - - 30 Hz, . . . 32 Hz

dof reduced Guyan model is used corresponding to the translations at nodes 3 and 8. The results plotted in
Figure 6 lead to an even larger shift in the minimums of the curves.
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Figure 6: 2 dofs reduced model and 2 dofs measured : MHB-ECRE results
— 28 Hz, - - - 30 Hz, . . . 32 Hz

The eigenfrequencies of the three different models are summarized in Table 1. Small differences can be
noted for the 4 dofs reduced model: 0.02% and 0.5% of relative error for respectively the first and second
modes. However, for the 2 dofs reduced model, the errors are more important: 1% for the first mode and
7.4% for the second. Moreover, the 5th harmonic of the three excitation frequencies are 140 Hz, 150 Hz and
160 Hz, which is close to the second eigenfrequency. The poor accuracy of this reduced model for the first
mode and even more on the second mode may explain the large shift observed in Figure 6.

Complete model 4 dofs reduced model - relative error 2 dofs reduced model - relative error
mode 1 30.76 Hz 30.74 Hz - 0.02% 31.08 Hz - 1%
mode 2 150.62 Hz 151.35 Hz - 0.5% 161.72 Hz - 7.4%

Table 1: Eigenfrequencies and relative errors of the different studied models
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Another way to understand the errors due to model reduction is to quantify the ratio between the residual
errorR of the reduced equilibrium equation (18) and the effective nonlinear force F .

R = Z(ω)Q+ F(Q)− P (18)

where, Z ∈ <(2n+ 1)Nr, (2n+ 1)Nr and R,F ,P ∈ <(2n+ 1)Nr, 1 and Nr is the number of dofs
retained in the reduced model. Figure 7 plots the ratio |R|/|F| calculated for the three frequencies, for the
nominal value of the nonlinear parameter and taking into account all the harmonics. These results show that
for a 2 dofs reduced model, the nonlinear information included in F is the same order of magnitude as the
residual error and thus is not sufficient to have a good estimation of the non-linear parameter. However, for
a 4 dof reduced model, and even more with 21 dofs (complete model), the ratio tends to 0. The nonlinear
force is now more significant and, as shown in test case 1 & 2, the nonlinear coefficient can be effectively
estimated.
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Figure 7: Influence of model reduction on results accuracy

In this case, a 2 dof static reduction is clearly insufficient and either more dofs must be included or an
alternative model reduction technique must be used that takes into account the dynamic behavior of the slave
structure, such as the Craig-Bampton [21] or Petersmann [22] methods.

4 Conclusions

This paper presents a novel nonlinear model updating approach that combines two well-known strategies
for structural dynamic analysis, namely the Multi-harmonic Balance method for calculating the periodic
response of a nonlinear system and the Extended Constitutive Relation Error method for establishing a well-
behaved metric for modeling and test-analysis errors. The proposed updating strategy has been illustrated
using simulated data based on the COST-F3 beam benchmark. The potential advantages of this methodology
are:

• The absence of a locally linearized model thus allowing strongly nonlinear systems to be addressed
with the inclusion of higher-order harmonics.

• It is not necessary to experimentally observe the structural displacements at the location of the non-
linear physics.

• The model responses do not need to be re-evaluated at every updating iteration thus reducing the
computational burden of the updating process.
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• Model reduction techniques can be used very efficiently to reduce calculation costs, on condition that
the reduced model is accurate enough at the frequencies of interest and at their harmonics.

The main limitation of the MHB-ECRE method concerns the impact of measurement noise and harmonic
truncation effects on the total MHB-ECRE curves. A decision indicator is currently under investigation to
quantify the level of nonlinearity that can reasonably be identified for a given level of model reduction and
measurement uncertainty.
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