
The study of unfoldable self-avoiding walks.
Application to protein structure prediction software

Christophe Guyeuxa, Jean-Marc Nicoda, Laurent Philippea,∗, Jacques M.
Bahia

aFEMTO-ST Institute, UMR 6174 CNRS, University of Franche-Comté, Besançon, France

Abstract

Self-avoiding walks (SAWs) are the source of very difficult problems in probabil-
ity and enumerative combinatorics. They are of great interest as, for example,
they are the basis of protein structure prediction in bioinformatics. The au-
thors of this article have previously shown that, depending on the prediction
algorithm, the sets of obtained walk conformations differ: for example, all the
self-avoiding walks can be generated using stretching-based algorithms whereas
only the unfoldable SAWs can be obtained with methods that iteratively fold
the straight line. A deeper study of (non-)unfoldable self-avoiding walks is
presented in this article. The contribution is first a survey of what is currently
known about these sets. In particular we provide clear definitions of various sub-
sets of self-avoiding walks related to pivot moves (unfoldable and non-unfoldable
SAWs, etc.) and the first results we have obtained, theoretically or computa-
tionally, on these sets. Then a new theorem on the number of non-unfoldable
SAWs is demonstrated. Finally, a list of open questions is provided and the
consequences on the protein structure prediction problem is proposed.

Keywords: Protein structure prediction, Protein folding, Self-avoiding walks,
Combinatorics algorithms, Problem complexity, Discrete structures.

1. Introduction

Self-avoiding walks (SAWs) have been studied over decades, both for their in-
terest in mathematics and their applications in physics: standard model of long
chain polymers [13], fundamental example in the theory of critical phenomena
in equilibrium statistical mechanics [26, 11], and so on. They are the source
of very difficult problems in probability and enumerative combinatorics [2, 7],
regarding among other things the number of n−step SAWs, their mean-square

∗Corresponding author
Email addresses: christophe.guyeux@femto-st.fr (Christophe Guyeux),

jean-marc.nicod@femto-st.fr (Jean-Marc Nicod), laurent.philippe@femto-st.fr
(Laurent Philippe), jacques.bahi@femto-st.fr (Jacques M. Bahi)

Preprint submitted to Computational Biology and Chemistry June 4, 2014

displacement, and the so-called scaling limit. The self-avoiding walks naturally
appear in bioinformatics during the prediction of the 3D conformation of a pro-
tein of interest. Frequently, the two dimensional backbone of the protein is
looked for in a first stage, and then this 2D structure is refined step by step to
obtain the final 3D conformation.

Protein Structure Prediction (PSP) software can be separated into various
categories. We decide in this article to focus on the two following frequently
used ones. On the one hand, some algorithms construct the proteins’ structures
on the 2D or 3D square lattice by adding, at each iteration, a new amino acid
at the tail of the protein. Most of the time, various positions are possible
for this amino acid, and the chosen position is the one that optimizes a given
functional, for instance the number of neighboring hydrophobic amino acids.
On the other hand, some algorithms start from the straight line with the size
of the considered protein, and they iterate pivot moves on this structure. Pivot
amino acids and angles are chosen to optimize a well-defined energy function.
We have pointed out, in our previous researches on the dynamics of the protein
folding process [5, 4], that these two categories of protein structure prediction
software cannot produce the same conformations [14]. More precisely all the
conformations can be attained in the first category whereas it is not the case in
the second one. This result has been formerly discovered by the community of
mathematicians that studies the self-avoiding walks (SAWs). It seems however
to be ignored by bioinformaticians and the connection with the PSP problem
has not been signaled.

Indeed, in their article introducing the pivot algorithm [22], Madras and
Sokal demonstrate a theorem showing that, when starting from the straight line
of length n, and iterating the 180◦ rotation and either both 90◦ rotations or both
diagonal reflections, all the n−step self-avoiding walks on Z2 can be obtained.
In other words, their pivot algorithm is ergodic for this set of transformations.
As an example, they depicted in this article a 223-step SAW in Z2 that is not
connected to any other SAW by 90◦ rotations (see Figure 1). This first ap-
parition of a “non-unfoldable” SAW was indeed the unique one in the literature,
and the study of (non-)unfoldable SAWs has not been deepened before our work
in [14].

Thus, by using the pivot algorithm incorrectly, a class of walks is excluded.
A first appropriate response to this issue is obviously to correct the software so
that the pivot algorithm is used correctly. If these walks however constitute an
exponentially small subset of SAWs, the lack of ergodicity in existing software
might not be fatal, and the results in the biology literature produced using these
tools may remain correct. Thus, additionally to the intrinsic theoretical interest
to study a kind of walks that has not yet been regarded, the determination
of the size ratio between self-avoiding walks and non-unfoldable SAWs may
impact both the development of new PSP software and some results previously
published in the proteomics area. This article does not solve the question of the
size ratio but it produces first theoretical framework and results that may help
to evaluate it in further studies.

The contribution of this article is thus a list of first results and questionings

2

about various sets of self-avoiding walks that can (or cannot) be attained by
±90◦ pivot moves, and their consequences regarding the PSP software. After
recalling some basis on self-avoiding walks, we provide definitions of 4 subsets
of SAWs that appear when considering pivot moves, namely the folded SAWs
obtained by iterating pivot moves on the straight line, the non-unfoldable SAWs,
the set of SAWs that can be unfolded at least once, and finally the subset of
self-avoiding walks that can be folded k times, k > 1. A list of results on these
subsets is provided. Among other things, the cardinality of unfoldable SAWs has
been bounded, the existence of infinitely many non-unfoldable SAWs has been
proven, a shorter example of non-unfoldable walk is given (107 steps), whereas
the equality between the set of SAWs and the set of unfoldable SAWs has been
computationally verified until number of steps lower or equal to 14. Relations
between these subsets are also provided before listing various open problems on
(non-)unfoldable self-avoiding walks. Computational aspects of this study are
detailed in [6].

The remainder of this document is organized as follows. In the next section,
a short overview about the self-avoiding walks is provided. This section enables
us to introduce basic definitions and well-known results concerning these walks.
Section 3 contains the rigorous definition of the subsets of self-avoiding walks
regarded in this manuscript. Then, in Section 4, a first list of easy-to-obtain
results we have obtained concerning the subset of non-unfoldable SAWs is de-
tailed, whereas the main result of this article is proven in the next section. A
non-exhaustive list of open questions is drawn up in Section 6. Consequences
regarding the protein structure prediction problem are investigated in Section 7.
This research work ends by a conclusion section, in which the contributions are
summarized and intended future work is proposed.

2. A Short Overview of Self-Avoiding Walks

We first recall usual notations and well-known results regarding self-avoiding
walks. In a next section, we bring partially these results in the unfoldable SAWs
subset.

2.1. Definitions and Terminologies
Let N be the set of all natural numbers, N∗ = {1, 2, . . .} the set of all

positive integers, and for a, b ∈ N, a < b, the notation Ja, bK stands for the
set {a, a + 1, . . . , b − 1, b}. |x| stands for the Euclidean norm of any vector
x ∈ Zd, d > 1, whereas x1, . . . , xd are the d coordinates of x. The n−th term of
a sequence s is denoted by s(n). Finally,]X is the cardinality of a finite set X.

Let us now introduce the notion of self-avoiding walk [23, 26, 18].

Definition 1 (Self-Avoiding Walk) Let d > 1. A n−step self-avoiding walk
from x ∈ Zd to y ∈ Zd is a map w : J0, nK→ Zd with:

• w(0) = x and w(n) = y,

• |w(i+ 1)− w(i)| = 1,

3

Figure 1: The first SAW shown to be not connected to any other SAW by 90◦ rotations
(Madras and Sokal, [22]), that is, the first discovered non-unfoldable SAW.

• ∀i, j ∈ J0, nK, i 6= j ⇒ w(i) 6= w(j) (self-avoiding property).

Let d ∈ N∗. Sn(x) is the set of n−step self-avoiding walks on Zd from 0 to
x, cn(x) =]Sn(x) is the cardinality of this set, Sn = ∪x∈ZdSn(x) is constituted
by all n−step self-avoiding walks that start from 0, whereas cn =

∑
x∈Zd cn(x)

is the number of n−step self-avoiding walks on Zd starting from 0, that is,
cn =]Sn [26].

2.2. Well-known results about self-avoiding walks
The objective of this section is not to realize a complete state of the art

about established or conjectured results on SAWs, but only to present a short
list of properties that are connected to our first investigations. For instance the
well-known pattern theorem [23] is not presented here. For further results about
SAWs readers can consult for instance [26, 23].

A first result concerning the number of n−step self-avoiding walks can be
easily obtained by remarking that, when m−step SAWs are concatenated to
n−step SAWs, we found all (m + n)−step self-avoiding walks and other walks
having intersections. In other words,

Proposition 1 ∀m,n ∈ N∗, cm+n 6 cmcn.

The existence of the so-called connective constant is a consequence of such
a proposition.

Theorem 1 The limit limn→∞ c
1/n
n exists. It is called the connective constant

and is denoted by µ. Moreover, we have µn 6 cn and d 6 µ 6 2d− 1.

For a proof of this result, reader is referred to [23].

4

Various bounds or estimates can be found in the literature [21, 26], like
cn ≈ Aµnnγ−1 for A and γ to determine (predicted asymptotic behavior) and

µ ∈ [2.625662, 2.679193].

The pivot algorithm is a dynamic Monte Carlo algorithm that produces self-
avoiding walks using the following basic approach [22]. Firstly, a point p on
the walk w is picked randomly and used as a pivot. Then a random symmetry
operation of the lattice, like a rotation, is applied to the second part (suffixes)
of the walk, using p as origin. If the resulting walk is a SAW, it is accepted, else
it is rejected and w is counted once again in the sample. A more detailed and
precise algorithm can be found in [22]. In this latter article, it is shown that,
quoting Madras and Sokal,

Theorem 2 The pivot algorithm is ergodic for self-avoiding walks on Zd pro-
vided that all axis reflections, and either all 90◦ rotations or all diagonal reflec-
tions, are given nonzero probability. In fact, any N−step SAW can be trans-
formed into a straight rod by some sequence of 2N − 1 or fewer such pivots.

The pivot algorithm is ergodic too for SAWs on the square lattice [22], pro-
vided that the 180◦ rotation, and either both 90◦ rotations or both diagonal
reflections, are given nonzero probability, whereas 90◦ rotations alone are not
enough, due to Fig. 1.

3. Introducing the (non-)unfoldable self-avoiding walks

3.1. Protein folding as preliminaries
Let us introduce the original context motivating the study of particular

subsets of SAWs we called “unfoldable” self-avoiding walks in the remainder of
this document.

The 2 or 3 dimensional square lattice hydrophobic-hydrophilic model, simply
denoted as HP model, is used for low resolution backbone structure prediction
of a given protein. In this model formerly introduced by Dill [12], hydrophobic
interactions are supposed to dominate protein folding [5, 4]. The protein core
freeing up energy is formed by hydrophobic amino acids, whereas hydrophilic
amino acids tend to move in the outer surface due to their affinity with the
solvent (see Fig. 2).

In this model a protein conformation is a SAW on a 2D or 3D lattice depend-
ing on the level of resolution. This SAW depends on topological neighboring
contacts between hydrophobic amino acids that are not contiguous in the pri-
mary structure. The SAW is such that the free energy E of the protein is
minimal. In other words, for an amino acid sequence P of length n and for the
set C(P) of all n−step SAWs, the walk chosen to represent the conformation of
the protein is C∗ = min {E(C) | C ∈ C(P)} [25]. In that context and for a con-
formation (SAW) C, E(C) = −q where q is equal to the number of topological
hydrophobic neighbors. For example, E(c) = −5 in Fig. 2.

5

Figure 2: Hydrophilic-hydrophobic model (black squares are hydrophobic residues)

The overriding problem in PSP is: how to find such a minimal conformation,
given all the n−step self-avoiding walks and the sequence of hydrophobicity of
the protein ?

Given its sequence of hydrophobicity, finding the best 2D conformation of a
protein is not an easy task. When considering the set of self-avoiding walks hav-
ing n−steps and whose vertices are either black (hydrophobic) or white squares
(hydrophylic residues), the authors of [10] have indeed proven that determining
the SAWs that maximize the number of neighboring black squares in this set is
NP-hard. Given a sequence of amino acids, such statement leads to the use of
heuristics to predict (and not to determine exactly) the most probable confor-
mation of the protein. These heuristics operate as in the real biological world,
folding or increasing the length of SAWs in order to minimize the free energy of
the associated conformation. By doing so the protein synthesis in its aqueous
environment is reproduced in silico. As stated previously, we have shown in
a previous work that such investigations potentially lead to various subsets of
self-avoiding walks [5, 4, 14].

In the first approach, starting from the straight line, we obtain by a suc-
cession of pivot moves of 90◦ a final conformation being a self-avoiding walk.
In this approach, it is not regarded whether the intermediate walks are self-
avoiding or not. Such a method corresponds to programs that start from the
initial conformation, fold several times the linear protein, according to their
embedded scoring functions, and then obtain a final conformation on which the
SAW requirement is verified. It is easy to be convinced that, by doing so, the set
of final conformations is exactly equal to the set of self-avoiding walks having n
steps. As the conformations obtained by such methods coincide exactly to the
well-studied global set of all SAWs, such an approach is not further investigated
in the remainder of this paper [14].

Remark 1 This first approach guarantees to reach all self-avoiding walks. The
embedded energy or scoring function however discriminate against some walks,
which is indeed the role of this function. For instance, a straight chain is a
SAW but most reasonable scoring functions for folding will not produce this as a

6

Figure 3: Protein Structure Prediction by folding SAWs

"folded" conformation, as the pivot moves are accepted only when energy/score
can be lowered. We simply point out that, in this first approach, the walks that
are evaluated by the scoring function is the whole set of self-avoiding walks:
simulating numerically protein folding does not introduce a bias before calling
the scoring function.

In the second approach, the same process is realized, except that all the
intermediate conformations must be self-avoiding walks (see Fig. 3). The set
of n−step SAWs reachable by such a procedure is denoted by fSAWn in what
follows. Such a procedure is one of the two most usual translations of the so-
called “SAW requirement” in the bioinformatics literature, leading to proteins’
conformations belonging into fSAWn. For instance, PSP methods presented
in [19, 27, 8, 15, 17] follow such an approach. We have shown in [14] that
fSAWn (Sn [22]. In other words, in this first category of PSP software, it is
impossible to reach all the conformations of Sn.

Remark 2 This second approach discards intermediate conformations with col-
lisions. This may prevent a method from reaching specific SAWs. In particular,
protein structure prediction and protein folding are not two sides of the same
coin.

Other approaches in the same category can be imagined, like the following
one. We can act as above, requiring additionally that no intersection of vertex

7

Figure 4: Pivot move acceptable in fSAW but not in fSAW ′

or edge during the transformation of one SAW to another occurs. For instance,
the pivot move of Figure 4 is authorized in the previous fSAW approach, but
it is refused in the current one: during the rotation around the residue having
a cross, the rigid structure after this residue intersects the remainder of the
“protein” (see Fig. 5). In this two dimensional approach denoted by fSAW ′,
it is not allowed for a protein folding to use the 3D space to achieve one plane
conformation from another plane one. A reasonable modeling of the true natural
folding dynamics of an already synthesized protein can be obtained by extending
this requirement to the third dimension. However, due to its complexity, this
requirement is actually never used by tools that embed a 2D HP square lattice
model for protein structure prediction. This is why these particular SAWs are
not further investigated in this document. Let us just emphasize that fSAW ′n
is obviously a subset of fSAWn, but there is a priori no reason to consider
them equal. Indeed, Figure 6 shows that,

Proposition 2 For all n ∈ N∗, fSAW ′n ⊂ fSAWn. However, ∃n ∈ N∗,
fSAW ′n 6= fSAWn.

Proof In Figure 6, the unique possible pivot move is the red dot, and obviously
such move leads to the intersection between the head and the tail of the structure
during the transformation.

Note that we only studied pivot moves of ±90◦ in the three previous ap-
proaches. But considering other sets of transformations could be interesting in
some well-defined contexts and can potentially lead to new subsets of SAWs.

A last bioinformatics approach of protein structure prediction using self-
avoiding walks starts with an 1−step SAW, and at iteration k, a new step is
added at the tail of the walk, in such a way that the new k−step self-avoiding
walk presents the best value for the considered scoring function (see Fig 7). The
protein is thus constructed step by step, reaching the best local conformation at

8

Figure 5: An intersection appears between the head and the tail during the transformation,
thus this pivot move is refused in fSAW ′.

Figure 6: fSAWn 6= fSAW ′n

9

Figure 7: Protein Structure Prediction by stretching SAWs

each iteration. It is easy to see that such an approach leads to all the possible
self-avoiding walks having the length of the considered protein [14].

In the remainder of this document, we give a more rigorous definition of the
fSAWn set, we initiate its study, and compare it to the well-known SAWs set
denoted Sn.

3.2. Notations
Unfoldable self-avoiding walks can be studied in a lattice having d dimen-

sions. However, for the sake of simplicity, authors of this research work have
decided to introduce them only on the 2 dimensional square lattice Z2, to be
as close as possible to their field of application: the low resolution backbone
structure prediction of a protein. Such restriction enables us to produce under-
standable pictures of such not yet investigated particular walks.

One of the easiest way to define the previously described self-avoiding walks
that appear during the realization of the SAW requirement in PSP algorithms,
is to introduce the absolute encoding of a walk [16, 3]. In this encoding, a
n+1−step walk w = w(0), . . . , w(n) ∈

(
Z2
)n+1 with w(0) = (0, 0) is a sequence

s = s(0), . . . , s(n− 1) of elements belonging into Z/4Z, such that:

• s(i) = 0 if and only if w(i + 1)1 = w(i)1 + 1 and w(i + 1)2 = w(i)2, that
is, w(i+ 1) is at the East of w(i).

10

• s(i) = 1 if and only if w(i+1)1 = w(i)1 and w(i+1)2 = w(i)2−1: w(i+1)
is at the South of w(i).

• s(i) = 2 if and only if w(i+1)1 = w(i)1−1 and w(i+1)2 = w(i)2, meaning
that w(i+ 1) is at the West of w(i).

• Finally, s(i) = 3 if and only if w(i+1)1 = w(i)1 and w(i+1)2 = w(i)2+1
(w(i+ 1) is at the North of w(i)).

Let us now define the following functions [14].

Definition 2 The anticlockwise fold function is the function f : Z/4Z −→
Z/4Z defined by f(x) = x − 1 (mod 4) and the clockwise fold function is
f−1(x) = x+ 1 (mod 4).

Using the absolute encoding sequence s of a n−step SAW w that starts from
the origin of the square lattice, a pivot move of 90◦ on w(k), k < n, simply
consists to transform s into s(0), . . . , s(k − 1), f(s(k)), . . . , f(s(n)). Similarly, a
pivot move of −90◦ consists to apply f−1 to the tail of the absolute encoding
sequence, like in Figure 8.

3.3. A graph structure for SAWs folding process
We can now introduce a graph structure describing well the iterations of

±90◦ pivot moves on a given self-avoiding walk.
Given n ∈ N∗, the graph Gn, formerly introduced in [14], is defined as

follows:

• its vertices are the n−step self-avoiding walks, described in absolute en-
coding;

• there is an edge between two vertices si, sj if and only if sj can be obtained
by one pivot move of ±90◦ on si, that is, if there exists k ∈ J0, n− 1K s.t.:

– either si(0), . . . , si(k − 1), f(si(k)), . . . , f(si(n)) = sj

– or si(0), . . . , si(k − 1), f−1(si(k)), . . . , f
−1(si(n)) = sj .

Such a digraph is depicted in Figure 9. The circled vertex is the straight line
whereas strikeout vertices are walks that are not self-avoiding. Depending on
the context, and for the sake of simplicity, Gn will also refer to the set of SAWs
in Gn (i.e., its vertices).

Using this graph, the unfoldable SAWs introduced in the previous section
can be redefined more rigorously.

Definition 3 fSAWn is the connected component of the straight line 00 . . . 0
(n times) in Gn, whereas Sn is constituted by all the vertices of Gn.

11

(a) 000111 (b) 001222 =
00f−1(0)f−1(1)f−1(1)f−1(1)

Figure 8: Effects of the clockwise fold function applied on the four last components of an
absolute encoding.

The Figure 1 shows that the connected component fSAW (223) of the straight
line in G223 is not equal to the whole graph: G223 is not connected. More pre-
cisely, this graph has a connected component of size 1: Figure 1 is totally non-
unfoldable, whereas SAW of Fig. 6 can be folded exactly once. Indeed, to be in
the same connected component is an equivalence relation Rn on Gn,∀n ∈ N∗,
and two SAWs w, w′ are considered equivalent (with respect to this equivalence
relation) if and only if there is a way to fold w into w′ such that all the inter-
mediate walks are self-avoiding. When existing, such a way is not necessarily
unique.

These remarks lead to the following definitions.

Definition 4 Let n ∈ N∗ and w ∈ Sn. We say that:

• w is non-unfoldable if its equivalence class, with respect to Rn, is of size
1;

• w is an unfoldable self-avoiding walk if its equivalence class contains the
n−step straight walk 000 . . . 0 (n− 1 times);

• w can be folded k times if a simple path of length k exists between w and
another vertex in the same connected component of w.

Moreover, we introduce the following sets:

• fSAW (n) is the equivalence class of the n−step straight walk, or the set
of all unfoldable SAWs.

• fSAW (n, k) is the set of equivalence classes of size k in (Gn,Rn).

• USAW (n) is the set of equivalence classes of size 1 (Gn,Rn), that is, the
set of non-unfoldable walks.

• f1SAW (n) is the complement of USAW (n) in Gn. This is the set of
SAWs on which we can apply at least one pivot move of ±90◦.

Example 1 Figure 10 shows the two elements of a class belonging into fSAW (219, 2)
whereas Fig. 1 is an element of USAW (223).

12

Figure 9: The digraph G3 = fSAW (3)

Figure 10: The two self-avoiding walks in fSAW (219, 2)

13

4. A Short List of Results on (non-)unfoldable Self-Avoiding Walks

We now give a first collection of easy-to-obtained results concerning the
particular SAW sets introduced in the previous section. These results have
been either obtained mathematically or by using computers.

We firstly show that,

Proposition 3 The cardinality φn of fSAWn satisfies: 2n+2 6 φn 6 4× 3n.

This result is a consequence of the following lemma.

Lemma 1 The 2n n−step walks that take steps only in a set of coordinate
directions having the form {i, i+ 1(mod 4)} are in fSAW (n).

This lemma can be proven using the number of cranks of a self-avoiding
walk, defined below.

Definition 5 (Crank) Let w be a n−step self-avoiding walk on Z2 of absolute
encoding s. w contains a crank at position k ∈ J1, nK if s(k − 1) 6= s(k).

Proof (Lemma 1) Let n ∈ N∗. We show by a mathematical induction that,
∀N ∈ N, any n−step self-avoiding walk that (1) has coordinate directions be-
longing in a set of the form {i, i+ 1(mod 4)}, for a given i ∈ J0, 3K, and (2) has
N cranks, is in fSAW (n).

The base case is obvious, as if N = 0, then w is a straight line.
Let N ∈ N such that the statement holds for all k 6 N , and consider a

n−step self-avoiding walk w that has N + 1 cranks while taking steps only in
the positive coordinate directions (set of coordinate directions having the form
{0, 3}), in order to clarify expectations. Let j be the position of the first crank
in w. As steps are taken only in the positive coordinate directions, only two
situations can occur: (1) w(j) = w(j − 1) + (1, 0) and w(j + 1) = w(j) + (0, 1)
(s(j−1) = 0, s(j) = 3), or (2) w(j) = w(j−1)+(0, 1) and w(j+1) = w(j)+(1, 0)
(s(j − 1) = 3, s(j) = 0).

Suppose now that the origin of the 2D square lattice is set to w(j). So, in
the first situation (1),

• ∀l > j, w(l) = (w(l)1, w(l)2) is such that w(l)1 > 0 while w(l)2 > 1,

• ∀l < j, w(l) = (w(l)1, w(l)2) is such that w(l)1 6 −1 while w(l)2 6 0.

The effect of a 90◦ pivot move on the origin w(j) is to reduce the number of
cranksN+1 toN in w, and to map each w(l) = (w(l)1, w(l)2) into (w(l)2, w(l)1),
∀l > j. After such a pivot move, the obtained walk w′ is such that ∀l > j,
w′(l)1 = w(l)2 > 1, while ∀l < j, w′(l)1 = w(l)1 6 −1. In other words, the walk
w′ still remains self-avoiding. The induction hypothesis is then applied on the
tail of w′ (the head being the j − 1-step straight line), which satisfies the two
required properties (w′ havingN cranks, its tail hasN−1 cranks). Furthermore,
w′ is obtained by operating a pivot move on w, thus these two walks belong into

14

fSAW(n) = f SAW(n)1

(a) Gn for n 6 14

fSAW(n)

f SAW(n)

nfSAW(n)

1

(b) Diagram of Gn for n = 107

Figure 11: Vien diagram for Gn

the same connective component of Gn. Finally, w ∈ fSAW (n). This argument
still remains valid for the other sets {i, i+1(mod 4)}, i ∈ J0, 2K, mutatis mutandis.

The second situation (2) can also be handled that way, which concludes the
mathematical induction and the proof of the lemma.

Proof (Proposition 3) Due to Lemma 1, we have φn > 4×2n (4× because of
the 4 quarters of the square lattice). And since the set of n−step walks without
immediate reversals has cardinality 4 × 3n and contains all n−step unfoldable
self-avoiding walks, we have φn 6 4× 3n.

Remark 3 SAWs whose absolute encoding is only constituted by 0’s and 1’s
are unfoldable SAWs. It is also possible that a few 2’s or 3’s can be added
without breaking the unfoldable character of the walk. This means that the
lower bound could be increased.

Proposition 4 ∀n 6 14, fSAW (n) = Gn whereas fSAW (107) (G107 (see
Figure 11).
In other words, let νn the smallest n > 2 such that USAW (n) 6= ∅. Then
15 6 νn 6 107.

Proof We have realized a program that constructs the connected component
of the n−step straight line for n 6 14, and at each time, we have obtained
the whole Gn (see [6]). Additionally, using a backtracking method, we have
obtained the walk depicted in Figure 12. This walk justifies the upper bound
of 107: we have verified using a systematic program that no pivot move can
be realized in that walk without breaking the self-avoiding requirement. These
programs, their explanations and justifications can be found in [6].

Proposition 5 ∀n 6 28, f1SAW (n) = Gn.

Proof Obtained experimentally, see [6].
The results contained into the two previous propositions are summarized,

with all intermediate computations, in Table 1. The]Gn values, obtained in [20],
are recalled here for comparison.

15

n]Gn]f1SAW (n)]USAW (n) =]fSAW (n)

]f1SAW (n)
1 4 4 0 4
2 12 12 0 12
3 36 36 0 36
4 100 100 0 100
5 284 284 0 284
6 780 780 0 780
7 2172 2172 0 2172
8 5916 5916 0 5916
9 16268 16268 0 16268
10 44100 44100 0 44100
11 120292 120292 0 120292
12 324932 324932 0 324932
13 881500 881500 0 881500
14 2374444 2374444 0 2374444
15 6416596 6416596 0 ?
16 17245332 17245332 0 ?
17 46466676 46466676 0 ?
18 124658732 124658732 0 ?
19 335116620 335116620 0 ?
20 897697164 897697164 0 ?
21 2408806028 2408806028 0 ?
22 6444560484 6444560484 0 ?
23 17266613812 17266613812 0 ?
24 46146397316 46146397316 0 ?
25 123481354908 123481354908 0 ?
26 329712786220 329712786220 0 ?
27 881317491628 881317491628 0 ?
28 2351378582244 2351378582244 0 ?
29 6279396229332 ? ? ?
30 16741957935348 ? ? ?
31 44673816630956 ? ? ?
...

...
...

...
...

107 ? ? > 1 ?

Table 1: Cardinalities of various subsets of SAWs

16

Figure 12: Current smallest (107-step) SAW that cannot be folded

Figure 13: A connected component with 5 elements

Until now, connected components presented in this paper either have the
straight line, or are of size 1 or 2. A reasonable questioning is to wonder whether
it is possible to have larger connected components different from the one of the
straight line. We are founded to claim that,

Proposition 6 It exists k > 2 such that fSAW (n, k) is nonempty.

In other words, connected components different from fSAW (n) and larger
than 1 or 2 elements exist. The result, which has been experimentally obtained,
can be proven by exhibiting a example: Figure 13 shows a connected component
of size 5.

We can define a diameter function D on the connected components of Gn,
such that D(C) is the length of the longest shortest path in the connected
component C of Gn. Consider the connected component of the straight line
fSAW (n), we have the result,

17

Proposition 7 The diameter of fSAW (n) is equal to 2n: D(fSAW (n)) = 2n.

Proof We take the SAW Sz1 defined as the zigzag (0, 1, 0, 1, 0, ...) and the Sz2
defined as the zigzag (2, 1, 2, 1, 2, ...).

We can transform Sz1 in (2, 3, 2, 3, 2, ...) by two pivot moves:

(0, 1, 0, 1...)→ (1, 2, 1, 2, 1, ...)→ (2, 3, 2, 3, 2, ...).

Then two other pivot moves allow us to transform (2, 3, 2, 3, 2, ...) in (2, 1, 0, 1, 0, ...),
that is,

(2, 3, 2, 3, 2, ...)→ (2, 2, 1, 2, 1, 2, ...)→ (2, 1, 0, 1, 0, 1, ...).

As the respective visited vertices start by (0, 1), (1, 2), (2, 3), (2, 2), (2, 1), we ob-
tain by doing so a simple path of length 4. The process can be reproduced on
the tail (0, 1, 0...) of (2, 1, 0, 1, 0...) until each 0’s (odd positions) of the SAW has
been transformed to 2, and each 1’s (even position) has been set again to 1. As
there are two pivot moves for each value in the path and as each pivot move is
in a different direction in Gn, so the minimum distance from Sz1 to Sz2 in Gn
is 2n.

This path, from Sz1 to Sz2 , is the largest distance we can find in Gn as we
have two pivot moves on each edge. If we add indeed one more pivot move, i.e.,
three pivot moves, on an edge then the same value could be obtained from the
initial position by making only one pivot move in the opposite direction which
would reduce the distance between the two SAWs.

Example 2 In fSAW (2), this diameter corresponds, for instance, to the short-
est path 03→ 00→ 11→ 12→ 23 (see Figure 14).

5. The Main Results

Let us introduce again new notations and terminologies.

5.1. Definitions and properties
Definition 6 Let x(n) be the word

034n(23)428n+2(12)418n+2(01)408n+2(30)434n014n+1(21)428n+4(32)438n+4(03)408n+4(10)414n+222,

of length 64n+ 89 and y(n) be the word

0214n+3(21)428(n+1)(32)438(n+1)(03)408(n+1)(10)414n+4234n+3(23)428n+6(12)418n+6(01)408n+6(30)434n+12.

of length 64n+ 121. Let s0 be the word:
2,1,2,2,3,2,3,2,3,3,0,3,0,3,0,0,1,0,1,0,0,3,2,3,2,3,2,3,2,2,1,2,1,2,1,2,1,2,1,1,0,1,0,
1,0,1,0,1,0,0,3,0,3,0,3,0,3,0,0,0,0,1,1,1,2,1,2,1,2,1,2,1,2,2,2,2,2,2,2,2,3,2,3,2,3,2,
3,2,3,3,3,3,3,3,3,3,0,3,0,3,0,3,0,3,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,2,3,3,3,2,
3,2,3,2,3,2,3,2,2,2,2,2,2,1,2,1,2,1,2,1,2,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,3,0,
3,0,3,0,3,0,3,2,2,1,2,1,2,1,2,1,2,2,2,2,3,2,3,2,3,2,3,2,3,3,3,3,0,3,0,3,0,3,0,3,0,0,0,
0,1,0,1,0,1,0,1,0,1,1,2,2,2,2,2,3,2,2,1,1,0,0,0,

whose walk w0 = dec((2,−2); s0) is depicted in Figure 15(a). sk, k > 1, is
inductively defined by:

18

01

32 33 30

21 22 23

10 11 12

03 00

Figure 14: The digraph G2 = fSAW (2)

• if k is even, sk is sk−1 in which the word 14n−11234n−1 has been replaced
by 14n−1x(n)234n−1, where n = k/2 + 1,

• otherwise, when k is odd, sk is sk−1 in which 34n0114n is substituted by
34n0y(n)14n, where n is (k + 1)/2.

For n > 1, we define the walk wn by: wn = dec((2,−2); sn).

This process is well defined, as an immediate recursion shows that for all n > 0:

• s2n contains the subword 14n234n−1 exactly once and it does not contain
the subword 34n014n+1, while x(n) introduces this latter word exactly
once into s2n.

• s2n+1 contains the subword 34n014n+1 exactly once. It has no subword
equal to 14(n+1)234(n+1)−1, whereas y(n) introduces it in s2n+1 exactly
once.

The word s2n can thus be divided in three parts: the pattern 14n−11234n−1, its
left part σl2n and its right part σr2n. A similar notation can be introduced for
the three equivalent subword in s2n+1.

This recursive process is illustrated in Fig. 23. We can claim that,

Theorem 3 For all n, wn = dec((2,−2); sn) is in nfSAW (|wn|).

Remark 4 w0 is a 239-step walk, whereas for all n > 0:

• if n is odd, then |wn| = |wn−1|+ |y(n−12)| − 1 = |wn−1|+ 64× n−1
2 + 120,

• else |wn| = |wn−1|+ |x(n2 + 1)| − 1 = |wn−1|+ 64× (n2 + 1) + 88.

19

(a) w0 (239-step walk) (b) w1 (391-step walk)

(c) w2 (575-step walk) (d) w3 (791-step walk)

Figure 15: Generating walks that cannot be folded

See Figure 23 for a representation of w0, . . . , w3 and Table 2 for the first sizes
of wn.

Corollary 1 There is an infinite number of n such that nfSAW (n) is nonempty.
In particular, the number of SAWs that cannot be folded is infinite.

Proof (Corollary) This is an immediate consequence of Theorem 3, as |wn|
is a strictly increasing sequence. 2

5.2. Proof of Theorem 3
5.2.1. Preliminaries

Consider the octagons On and on on the square lattice, respectively bounded
by {An,Bn,Cn,Dn,En,Fn,Gn,Hn, In, Jn} and by {an, bn, cn, dn, en, fn, gn, hn, in, jn},
where:

20

n |wn| n |wn|
0 239 10 3199
1 391 11 3671
2 575 12 4175
3 791 13 4711
4 1039 14 5279
5 1319 15 5879
6 1631 16 6511
7 1975 17 7175
8 2351 18 7871
9 2759 19 8599

Table 2: Size of wn

Figure 16: Remarkable points of octagons on−1 and On−1 defining walk on−1 in wn (n = 2
here).

21

• an = (2n+ 9, 0),An = (2n+ 10, 0),

• bn = (2n+ 9, 2n+ 5),Bn = (2n+ 10, 2n+ 6),

• cn = (2n+ 5, 2n+ 9),Cn = (2n+ 6, 2n+ 10),

• dn = (−2n− 5, 2n+ 9),Dn = (−2n− 6, 2n+ 10),

• en = (−2n− 9, 2n+ 5),En = (−2n− 10, 2n+ 6),

• fn = (−2n− 9,−2n− 5),Fn = (−2n− 10,−2n− 6),

• gn = (−2n− 5,−2n− 9),Gn = (−2n− 6,−2n− 10),

• hn = (2n+ 5,−2n− 9),Hn = (2n+ 6,−2n− 10),

• in = (2n+ 9,−2n− 5), In = (2n+ 10,−2n− 6),

• and jn = (2n+ 9,−1), Jn = (2n+ 10,−1).

Let a′n = (2n+9, 1), A′n = (2n+10, 1), j′n = (2n+9,−2), and J′n = (2n+10,−2),
as depicted in Figure 16, while xn = (2n + 8, 1), Xn = (2n + 8, 0), yn = (2n +
8,−2), and Yn = (2n+ 8,−1) are at the West of these points.

For n ∈ N, define the walk o as follows: if n is even, then on = dec(xn, x(n/2+
1)), else on = dec(Yn, y((n+ 1)/2)). In other words, o is alternatively x and y,
depending on the parity of n (o0 and o1 are depicted in Figure 17). Having the
encoding of on, it is immediate to prove that, when n is even, then on is the
walk that:

1. starts from xn,
2. moves one step in the East until reaching a′n,
3. then visits the points bn, cn, dn, en, fn, gn, hn, in, jn of on in the anticlock-

wise direction, by starting with an and following a straight line (or a
diagonal),

4. moves another step in the East direction,
5. then visits all the points of discrete octagon On in clockwise direction,

that is, Jn, In, Hn, Gn, Fn, En, Dn, Cn, Bn, and finally An,
6. terminates its move by two steps in the West direction, until reaching Xn.

When n is odd, as o1 in Figure 17, we obtain a similar move, mutatis mutandis:
octagon On is visited first (always in the clockwise direction), xn is replaced by
Yn, and a′n by jn. Remark that, knowing the lengths of x(n) and y(n), we can
check that on is a 32n+ 153-step walk.

Graphically speaking, the recursive process presented in Definition 6 corre-
sponds to starts with the walk w0, and to add recursively on in wn to obtain
wn+1 (see Figure 18). This insertion occurs between xn and Xn if n is even, and
between Yn and yn else, as proven by the following lemma.

22

(a) o0 (153-step walk) (b) o1 (185-step walk)

Figure 17: First on walks

Lemma 2 Let s2n = sl2n1s
r
2n, where sl2n = σl2n1

4n−1 and sr2n = 234n−1σr2n.
Then the point w|sl2n|+1 ∈ Z2, where the extension of w2n begins during its
transformation in w2n+1 = enc(sl2nx(n)s

r
2n), is x2n. The end of the extension

w|sl2n|+|x(n)|+|sr2n|+1, for its part, is in X2n.
Similarly, the extension of the walk w2n+1 from enc(s2n+1) to enc(s2n+2)

starts in Y2n+1 and it ends in y2n+1.

(a) Case 1 (b) Case 2

Figure 18: Opening walks

Proof This lemma can be proven by induction on n.
The base case is obvious, as w1 is obtained by opening and extending w0

between (8, 1) = x0 and (8, 0) = X0, whereas w2 is obtained by extending w1

between (10,−1) = Y1 and (10,−2) = y1.
Suppose now that n > 0. On the one hand, let us consider s2n = sl2n1s

r
2n.

We have:
s2n+1 = sl2nx(n)s

r
2n

= sl2n03
4n(23)428n+2(12)418n+2(01)408n+2(30)434n0114n

(21)428n+2(32)438n+4(03)408n+4(10)414n+222sr2n
= sl2n+11s

r
2n+1.

Then the point that starts the extension in enc(sn+1) can be obtained from
the point that have started the extension in enc(sn) by following the walk

23

034n(23)428n+2(12)418n+2(01)408n+2(30)434n0 before the underlined 1, which
will be replaced in the next step by y(n). As:

• the number of 1’s in this pattern is 8n + 10 when the number of 3’s is
8n+ 8,

• and the number of 0’s is 8n+ 12 while the number of 2’s is only 8n+ 10,

then this walk corresponds to a move of absolute encoding 0011, that is, a move
from x2n (induction hypothesis) to Y2n+1. On the other hand,

s2n+2 = sl2n+1y(n)s
r
2n+1

= sl2n+10
214n+3(21)428(n+1)(32)438(n+1)(03)408(n+1)(10)414n+31sr2n+2.

A similar argument shows that the pattern

0214n+3(21)428(n+1)(32)438(n+1)(03)408(n+1)(10)414n+3

corresponds to a move of absolute encoding 0033, mapping Y2n+1 in x2n+2.
Finally, as the number of 0’s is equal to the number of 2’s in x(n), whereas

the number of 1’s is the number of 3’s plus 1, we have that the additional walk
x(n) that has started from xn ends in Xn.

A similar statement holds for Yn. 2

Example 3 o0 is inserted between x0 and X0 to transform w0 in w1. Then o1
is inserted between Y1 and y1 to transform w1 in w2, whereas o2 is inserted
between x2 and X2 to obtain w2 from w1.

Lemma 3 For all n, the walk wn is strictly included into the octagon on.

Proof This lemma can be proven by induction on n, as the list of points
of w0 are inside o0, whereas the induction property comes from the graphical
interpretation of Lemma 2. 2

We can finally establish the following lemma.

Lemma 4 All the wn walks satisfy the self-avoiding property.

Proof The base case is obvious by construction, as depicted in Figure 15(a).
The self-avoiding property of this walk has also been verified computationally,
see [6]. The induction is a direct consequence of the previous lemma: the
extension on is self-avoiding by construction, it is contained into octagons on
and On, whereas the remainder of w(n+ 1), which is w(n), is self-avoiding due
to the inductive hypothesis, and strictly inside on due to the previous lemma.
2

5.2.2. Proof of the theorem
We can now prove that, for all n, wn is a non unfoldable self-avoiding walk.

The self-avoiding property has been established in Lemma 4, it still remains to
demonstrate, by an inductive proof, that ∀n, wn cannot be folded.

24

The base case, for n ∈ {0, 1}, has been verified computationally, by testing
all the possible pivot moves in w0 and w1, and verifying that they are all in
contradiction with the self-avoiding property (reader interested by the compu-
tational aspects of this work is referred to [6]).

Let n > 2 such that, for all k < n, wk cannot be folded. We will show that
wn cannot be folded too. By construction, wn is constituted by two subwalks:
wn−1 and on−1, as established in the first lemma of this document. As wn−1
cannot be folded (this is the inductive hypothesis), we just have to verify that
pivot moves on points of the two octagons on−1 and On−1 always lead to a walk
that does not satisfy this self-avoiding property.

Suppose now that n is even. As all the points of on−1 are visited in the
anticlockwise direction before visiting the points of On−1 in the clockwise one,
we have the following result:

• When a point wn(i) on On−1 has a successor wn(i+1) at its South (resp.
West, North, East), then it has an ancestor wn(j), j < i immediately at
its West (resp. North, East, South). This ancestor is wn(i − 1) when
considering the zigzag corners of On−1 whereas it is on on−1 when wn(i)
is strictly inside the up, left, bottom, or right side of On−1, see Figure 17.
A pivot move of −π on wn(i) thus sends wn(i+ 1) on wn(j).

• A similar statement holds for pivot moves of −π on points of on−1.

Such an argument allow us to tackle half of the possible pivot moves, that is,
all possible pivot moves of angle −π.

(a) Case 1 (b) Case 2

Figure 19: Stages of the proof of Theorem 3

Let us now recall that wn−1 has been constructed by removing the 1-step
segment between xn−2 and Xn−2 in wn−2, and connecting the walk on−2 in
this liberated place. Thus wn contains at least octagons On−1, on−1,On−2, and
on−2. And, due to the fact that oi is visited before Oi when i is even, whereas
the situation is reversed when i is odd, we thus have the following travel in wn:

25

1. on−2 is firstly visited in anticlockwise direction, from a′n−2 = (2(n− 2) +
9, 1) until jn−2 = (2(n− 2) + 9,−1),

2. On−1 is then visited in clockwise direction, from Jn−1 = (2(n−1)+10,−1)
until reaching An−1 = (2(n− 1) + 10, 0),

3. on−1 is then visited in anticlockwise direction, from an−1 = (2(n−1)+9, 0)
to j′n−1 = (2(n− 1) + 9,−2),

4. finally, On−2 is visited in clockwise direction, from J′n−2 = (2(n − 2) +
10,−2) to An−2 = (2(n− 2) + 10, 0).

On the 4 zigzag corners, points wn(i) that are such that the absolute en-
coding of the 2-step walk wn(i − 1), wn(i), wn(i + 1) is in {03, 32, 21, 10}, are
such that a pivot move of π on wn(i) maps wn(i + 1) on wn(i − 1). By doing
so, we show that all the circled points in Figure 19 cannot be folded without
contradicting the self-avoiding property.

Firstly, let us remark that a π pivot move of an−1 sends An−2 at its West on
jn−1 at its South, and so wn cannot be folded at this position an−1. Similarly,
jn−1 sends an−1 on Jn−2, Jn−1 maps An−1 on j′n−1, and a π pivot move of An−1
sends an−1 on Jn−1.

Consider now a π pivot move of a point on the upper side of on−1, that is, a
point p = (t, 2n+7) between cn−1 = (2n+3, 2n+7) and dn−1 = (−2n−3, 2n+7)
(t ∈ J−2n−3, 2n+3K). Such a pivot move does not modify points of the segment
delimited by cn−2 = (2n+1, 2n+5) and dn−2 = (−2n+1, 2n+5), as this part
of the octagon on−2 is visited before the upper side of on−1. Contrarily, all the
points between p and dn−1 are moved by a pivot move of p, as on−1 is visited in
anticlockwise direction. If t is in [−2n− 1, 2n+1], then a pivot move of p sends
the point in position p+ (−2, 0) ∈ [cn−1, dn−1] in position p+ (0,−2), which is
in [cn−2, dn−2]. As this segment has not been rotated during this pivot move,
we thus obtain a contradiction of the self-avoiding property.

This argument still remains valid for points in the segments [en−1+(0,−2), fn−1+
(0,+2)], [gn−1+(2, 0), hn−1+(−2, 0)], [in−1+(0, 2), j′n−1+(0,−2)], and [a′n−1, bn−1+
(0,−2)].

Recall now that a rotation of π centered in (x0, y0) maps the point of coor-
dinate (a, b) in the point

r(a,b)(x0, y0) = (y0 − b+ a, a− x0 + b). (1)

Consider now the points of the upper right internal zigzag between bn−1 and
cn−1, namely (2n+6, 2n+3), (2n+5, 2n+4), (2n+4, 2n+5), and (2n+3, 2n+6).
Remind that On−2 is not affected by pivot moves on on−1. We can thus verify
that:

• a π pivot move of (2n + 6, 2n + 3) sends (2n + 5, 2n + 5) ∈ on+1 on
(2n+ 4, 2n+ 2) that belongs in the upper left zigzag Zuln−2 of On−2,

• a π pivot move of (2n + 5, 2n + 4) sends (2n + 4, 2n + 6) ∈ on+1 on
(2n+ 3, 2n+ 3) ∈ Zuln−2,

26

(a) (b)

(c) (d)

Figure 20: Case where n is even (n=2)

• a π pivot move of (2n + 4, 2n + 5) sends (2n + 3, 2n + 7) ∈ on+1 on
(2n+ 2, 2n+ 4) ∈ Zuln−2,

• finally, a π pivot move of (2n+3, 2n+6) sends (2n+1, 2n+7) ∈ on+1 on
(2n+ 2, 2n+ 4) ∈ Zuln−2 too.

The twelve other points in the zigzags of on−1 can be treated in the same
manner, mutatis mutandis.

As an extension, the point of coordinate (2n+7, 2n+2) at the South of bn−1
maps (2n+6, 2n+4) on (2n+5, 2n+1) ∈ On−2, (−2n− 2, 2n+7) at the East
of dn−1 sends (−2n−4, 2n+6) on (−2n−1, 2n+5) ∈ On−2, (−2n−7,−2n−2)
(at the North of fn−1) sends (−2n− 6,−2n− 4) on (−2n− 5,−2n− 1) ∈ On−2,

27

while (2n + 2,−2n − 7) (at the West of hn−1) maps (−2n − 6,−2n − 4) on
(−2n− 5,−2n− 1) ∈ On−2.

Then a pivot move of (2n+ 2, 2n+ 7) transforms (2n− 1, 2n+ 7) in (2n+
2, 2n + 4) ∈ On−2, a pivot move of (−2n − 7, 2n + 2) maps (−2n − 7, 2n − 1)
in (−2n − 4, 2n + 2), and a pivot move of (−2n − 2,−2n − 7) sends (−2n +
1,−2n − 7) in (−2n − 2,−2n − 4), while a pivot move of (2n + 7,−2n − 2)
sends (2n + 7,−2n + 1) in (2n + 4,−2n − 2) ∈ On−2. Finally, a pivot move of
(2n + 7,−2n + 1) maps (2n + 6, 0) on (2n + 4,−2n) ∈ On−2, which concludes
the study of on−1, in which no pivot move can be realized without breaking the
self-avoiding property of the walk.

Let us now consider the remainder points of On−1. On the upper side of
On−1, we have the following result: a π pivot move of p between (−2n, 2n+ 8)
(4 steps at the West of Dn−1) and (2n, 2n + 8) (4 steps at the East of Dn−1).
As depicted in Figure 20, and using both Equation 1 and the itinerary sequence
stated in the octagons visit list, we can prove that pivot move of p sends the point
p+(−3,−1) ∈ on−1 in p+(1,−3) belonging in on−2, leading to a contradiction
to the self-avoiding property. As for on−1, a same statement holds for segments
[(−2n−8, 2n), (−2n−8,−2n)], [(−2n,−2n−8); (2n,−2n−8)], [(2n+8, 2n), (2n+
8, 2)], and [(2n+8,−5), (2n+8,−2n)], respectively at the West, South, and East
sides of octagon On−1, see Figure 20. Pivot moves on the 4 points at the left of
[(−2n, 2n + 8); (2n, 2n + 8)] (upper side of On−1) map the upper left zigzag of
on−1 on the upper side of on−2, whereas the 4 points at its right send the upper
side of on−1 on the upper left zigzag of on−2. Such a statement holds for the
four points at the South of En−1 including En−1, for the 4 points at the North
of Fn−1, the 4 ones at the East of Gn−1, the 4 ones at the West of Hn−1, the
four points at the North of In−1, and finally the 4 points at the South of Bn−1
including Bn−1.

The 3 last pivot moves to consider in the external part of the upper right
zigzag of On−1 map the upper segment of on−1 in the right segment of on−2.
Similarly, the remainder points of the upper left zigzag map the left side of on−1
on the upper side of on−2, a pivot move of points in the lower left zigzag of On−1
sends the lower side of on−1 in the left side of on−2, while the effects of a pivot
move of points in the lower right zigzag sends the right side of on−1 on the lower
side of on−2.

It still remains to consider 4 pivot moves. A′n−1 sends the point (2n+ 6, 1)
on Jn−1, while J′n−1 and J′n−1+(0,−1) map respectively A′n−1 and An−1 on the
right side of on−2. Finally, J′n−1 + (0,−2) sends An−1 + (−2, 0) ∈ On−2 in the
lower right zigzag of on−2.

The case where n is odd can be handled exactly in the same way, except
that the octagons are not visited in the same order. Figure 21 summarizes the
situation on the straight sides of the octagons, whereas pivot moves on zigzags
produce similar intersections than in the even case (see Figure 22).

28

(a) Case 1

(b) Case 2

Figure 21: Pivot moves on octagon sides, n odd

6. A list of Open Questions

We enumerate in this section a list of open questions that have appeared
interesting to us. Some of them should be very easy to solve, whereas other
ones may involve a degree of difficulty.

In the following we define fSAW d(n) as the class of equivalency of the
n−step straight walk on Zd and Gdn is the equivalent of Gn in Zd. Note that
fSAW 2(n) is equal to fSAW (n), as introduced in Definition 3.3.

1. Did these walks constitute an exponentially small subset of SAWs ? For
if they do, then the lack of ergodicity in existing software might not be
fatal.

2. Is Theorem 3 a consequence of Kesten pattern theorem [22] ?
3. For any dimension d, do we have the existence of n ∈ N∗ such that
fSAW d(n) (Gdn?

4. fSAW 2(2) and fSAW 2(3) are obviously connected graphs, but they are
not Eulerian. Indeed, more than two vertices have an odd degree both in
fSAW 2(2) and fSAW 2(3) (see Figures 14 and 9). Is it the case for all
fSAW d(n) ?

5. fSAW 2(2) and fSAW 2(3) are Hamiltonian graphs, with the following
Hamiltonian circuits:

29

(a) Pivot move of π around (−10, 1)

(b) Pivot move of π around (−1,−10)

Figure 22: Case where n is odd (n=1)

• 00 → 03 → 32 → 23 → 10 → 11 → 22 → 33 → 30 → 21 → 12 →
01→ 00 for fSAW 2(2) (see Figure 14).

• 000 → 003 → 010 → 011 → 012 → 001 → 030 → 323 → 330 →
301 → 300 → 333 → 322 → 321 → 332 → 303 → 232 → 233 →
230 → 223 → 212 → 211 → 210 → 221 → 222 → 111 → 110 →
121 → 122 → 123 → 112 → 101 → 100 → 103 → 032 → 033 →

30

000 for fSAW 2(3) (see Figure 9). In particular, it is possible to
find a succession of pivot moves in such a way that, starting from
the straight line, the peptide of 4 amino acids visits all the possible
conformations exactly once.

Is it a coincidence, or is it the case for every fSAW d(n) ?
6. What is the exact value of the diameter D(fSAW d(n)) ?
7. Do we have a connective constant for fSAW d(n). That is, does the limit

limn→+∞ φ
1/n
n exist, and can we bound it ?

8. un =]USAW d(n) is an increasing sequence (for d = 2, or for any d)?
Does it grow at a given (linear or exponential) rate?

9. Let k ∈ N. Is the sequence vn =]fSAW (n, k) increasing with n ? If so
at which rate and does it depend on the dimension d? And what about
the sequence wk =]fSAW (n, k) for a given n ?

10. More simply, is there an non-unfoldable walk in Z3 ? If so, then PSP soft-
ware working in 3 dimensions and iterating pivot moves on the straight
line cannot reach such a conformation. This is problematic if this confor-
mation is biologically acceptable (or, more dramatically, if it is a confor-
mation that minimizes the free enthalpy). If not, then the results surveyed
in this paper for 2D lattices cannot be extended to the general case (3D,
without lattice constraints), and the interest of our study, besides being
interesting theoretical speaking, is then limited in the context of protein
structure prediction.

11. Are the connected components of Gdn convex ? In other words, given two
SAWs in a same component C. Are all (or at least one) the shortest paths
connecting them on Zd in C?

12. Is there a generating function expressing the unfoldable self-avoiding walks
more simply, making it possible to enumerate them on the square lattice
(like what has been realized in [9]).

13. When we can fold out a self-avoiding walk until a straight line, is it possible
to unfold it in such a way that the number of cranks always decreases ?
And for two given self-avoiding walks wi and wj of the same connected
component of Gn, such that wi has more cranks than wj , is there a path
from wi to wj whose vertices’ number of cranks is decreasing ? Is there a
relation between the vertex depth and the number of cranks in Zd?

7. Consequences on Protein Folding

This first theoretical study about (non-)unfoldable self-avoiding walks raises
several questions regarding the protein structure prediction problem and the
current ways to solve it. In one category of PSP software, the protein is supposed
to be synthesized first as a straight line of amino acids. Then this line of a.a.
is folded until reaching a conformation that optimizes a given scoring function.
By doing so the obtained backbone structures all belong into fSAW (n), where
n is the number of residues of the protein. The second category of PSP software

31

consider that, as the protein is already in the aqueous solvent, it does not
wait the end of the synthesis to take its 3D conformation. So they consider
SAWs whose number of steps increases from 1 to the number of amino acids
of the targeted protein and, at each step k, the current walk is stretched (one
amino acid is added to the protein) in such a way that the pivot k is placed
in the position that optimizes the scoring function they consider. By doing
so, the possible predicted backbones are the whole G3. The two sets of possible
conformations are different, at least when considering 2D low resolution models.

We show by this work that (1) to take place in the first situation (folding the
straight line by a succession of pivot moves) can be interesting as the number of
possible SAW conformations is smaller than]Gn. Indeed this interest is directly

related to the rate
]fSAW (n)

]Gn
< 1. If this rate decreases dramatically when

n increases, then the computational advantage is obvious. However, we have
currently no idea of such a gain, that is, of the growing rate of]fSAW (n)
compared to]Gn < 1. (2) The use of heuristics instead of exact methods
(like SAT solvers for instance) is a priori not justified for PSP software that
fold the straight line. Indeed, the PSP problem has been proven NP hard
on the set Gn of all possible SAWs. As they consider a strict subset of it,
the complexity of the problem might be reduced due to a lower number of
cases to consider. Proposition 3 however tends to indicate that this problem
still remains difficult in fSAW (n), which nevertheless necessitates a rigorous
complexity proof. (3) Biologically speaking, to suppose that the proteins wait
to be completely synthesized before starting to fold seems unrealistic, as the
synthesis occurs in an aqueous solvent. The protein indeed starts to fold during
its synthesis. Furthermore, to the authors’ opinion, it is restrictive to consider
that the head of the protein definitively stops to fold after having synthesized.
Such a supposition is equivalent to make a confusion between local (the SAW
at step k) and global (the final optimal SAW) optimization. Indeed, authors
of this manuscript recognize honestly that they have no idea to determine if
this third approach (continuously folding the walk while stretching it) is more
reasonable than the previous ones, and if it is equivalent to either fSAW (n)
or to Gn (or if it constitutes a third different subset of SAWs). The study of
the connected componants however is related to the reachable conformations
of already synthesized proteins. Note that non-unfoldable proteins have their
conformations limited to the domain of their connected componant. This justify
the interest for the study of such walks.

The authors’ goal is only to point out the importance to determine the
best dynamical system to model protein folding before programming it in PSP
software, as this model determine which conformations can be predicted. A last
remark to emphasize the importance of such a study: authors of [4] have proven
that the dynamical system used in the “folding the straight line” category is
chaotic according to Devaney, meaning that any wrong choice of pivot move
(due to approximations in the scoring function, for instance) can potentially
become dramatic. Other researches ([8] for instance) tend to show that the
protein folding process intrinsically embeds a certain amount of chaos. Thus, to

32

(a) Conformation having best score (27)

(b) Second best conformation (score 24)

Figure 23: Illustration of chaos in protein folding (conformations have been predicted using
RaptorX)

use a more or less erroneous model to predict the conformation could have grave
consequences in prediction quality. Figure 23 shows the two best conformations
predicted by RaptorX [24], a well-known PSP software. We can see that using
twice a same model, but with different parameters can potentially lead to quite
different conformations, illustrating a possible effect of some chaotic properties
exhibited by the chosen model. We can reasonably wonder what is the effect of

33

a wrong model on such a prediction.

8. Conclusion

In this paper, the problem of self-avoiding walks folding in the square lattice
has been tackled. Regarding the protein structure prediction problem, we have
shown that the set of generated self-avoiding walks depends on the PSP software
category. In particular some conformations cannot be reached by just folding the
straight line whereas they can be generated using random SAW generators as the
pivot algorithm. Starting from this fact, we have proposed a further exploration
of the unfoldable self-avoiding walks. Different subsets of self-avoiding walks
have been defined, like the set of non-unfoldable walks. We have shown that,
even though there is an infinite number of non-unfoldable SAWs, the number of
unfoldable SAWs is still exponential. After having described the first obtained
results on (non-)unfoldable SAWs, we have proposed a list of open questions that
could be explored on these SAWs. Lastly, the link between unfoldable SAWs
and proteins has been questioned, and the consequences of the PSP software
choice on protein conformation has been highlighted.

Several research problems are interesting to further study and better under-
stand the properties of (non-)unfoldable SAWs, as shown in the open questions
section. Our future work will concentrate on studying the connected compo-
nents of non-unfoldable SAWs as these components define feasable proteins with
limited reachable conformations and that cannot straighten. Other interesting
questions will be tackled as finding the smallest non-unfoldable SAWs, finding
the smallest connected components of non-unfoldable SAWs, and on the opti-
mization of energy levels of a given folded SAW.

Acknowledgments

The authors wish to thank Kamel Mazouzi, Thibaut Cholley, Raphaël Cou-
turier, and Alain Giorgetti for their help in understanding folded and unfoldable
SAWs. All the computations presented in the paper have been performed on
the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.

References

[1] Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2010, Barcelona, Spain, 18-23 July 2010. IEEE, 2010.

[2] Axel Bacher and Mireille Bousquet-Mélou. Weakly directed self-avoiding
walks. J. Comb. Theory Ser. A, 118(8):2365–2391, November 2011.

[3] R. Backofen, S. Will, and P. Clote. Algorithmic approach to quantifying
the hydrophobic force contribution in protein folding, 1999.

34

[4] Jacques Bahi, Nathalie Côté, and Christophe Guyeux. Chaos of protein
folding. In IJCNN 2011, Int. Joint Conf. on Neural Networks, pages 1948–
1954, San Jose, California, United States, July 2011.

[5] Jacques Bahi, Nathalie Côté, Christophe Guyeux, and Michel Salomon.
Protein folding in the 2D hydrophobic-hydrophilic (HP) square lattice
model is chaotic. Cognitive Computation, 4(1):98–114, 2012.

[6] Jacques Bahi, Christophe Guyeux, Kamel Mazouzi, and Laurent Philippe.
Computational investigations of folded self-avoiding walks related to pro-
tein folding. Journal of Bioinformatics and Computational Biology,
47(*):246–256, December 2013.

[7] Nicholas R. Beaton, Philippe Flajolet, Timothy M. Garoni, and Anthony J.
Guttmann. Some new self-avoiding walk and polygon models. Fundam.
Inf., 117(1-4):19–33, January 2012.

[8] Michael Braxenthaler, R. Ron Unger, Ditza Auerbach, and John Moult.
Chaos in protein dynamics. Proteins-structure Function and Bioinformat-
ics, 29:417–425, 1997.

[9] A. R. Conway, I. G. Enting, and A. J. Guttmann. Algebraic techniques for
enumerating self-avoiding walks on the square lattice. Journal of Physics
A Mathematical General, 26:1519–1534, April 1993.

[10] Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio
Piccolboni, and Mihalis Yannakakis. On the complexity of protein folding
(extended abstract). In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, STOC ’98, pages 597–603, New York, NY, USA,
1998. ACM.

[11] P. G. de Gennes. Exponents for the excluded volume problem as derived
by the Wilson method. Physics Letters A, 38(5):339–340, February 1972.

[12] KA Dill. Theory for the folding and stability of globular proteins. Bio-
chemistry, 24(6):1501–9–, March 1985.

[13] Paul J. Flory. The Configuration of Real Polymer Chains. The Journal of
Chemical Physics, 17(3):303–310, 1949.

[14] Christophe Guyeux, Nathalie M.-L. Côté, Wojciech Bienia, and Jacques
Bahi. Is protein folding problem really a NP-complete one? first investiga-
tions. Journal of Bioinformatics and Computational Biology, 12(1):1350017
(14 pages), February 2014.

[15] Trent Higgs, Bela Stantic, Tamjidul Hoque, and Abdul Sattar. Genetic
algorithm feature-based resampling for protein structure prediction. In
IEEE Congress on Evolutionary Computation [1], pages 1–8.

35

[16] Md. Hoque, Madhu Chetty, and Abdul Sattar. Genetic algorithm in ab
initio protein structure prediction using low resolution model: A review. In
Amandeep Sidhu and Tharam Dillon, editors, Biomedical Data and Appli-
cations, volume 224 of Studies in Computational Intelligence, pages 317–
342. Springer Berlin Heidelberg, 2009.

[17] Dragos Horvath and Camelia Chira. Simplified chain folding models as
metaheuristic benchmark for tuning real protein folding algorithms? In
IEEE Congress on Evolutionary Computation [1], pages 1–8.

[18] Barry D. Hughes. Random walks and random environments, Volume 1:
Random walks. Clarendon Press, Oxford, March 1995.

[19] Md. Kamrul Islam and Madhu Chetty. Clustered memetic algorithm for
protein structure prediction. In IEEE Congress on Evolutionary Compu-
tation [1], pages 1–8.

[20] Iwan Jensen. Enumeration of self-avoiding walks on the square lattice. J.
Phys. A, pages 5503–5524, 2004.

[21] Iwan Jensen. Improved lower bounds on the connective constants for two-
dimensional self-avoiding walks. Journal of Physics A: Mathematical and
General, 37(48):11521+, 2004.

[22] Neal Madras and Alan D. Sokal. The pivot algorithm: A highly effi-
cient monte carlo method for the self-avoiding walk. Journal of Statistical
Physics, 50:109–186, 1988.

[23] Neal Noah Madras and Gordon Slade. The self-avoiding walk. Probability
and its applications. Birkhäuser, Boston, 1993.

[24] Jian Peng and Jinbo Xu. Raptorx: Exploiting structure information for
protein alignment by statistical inference. Proteins, 79(S10):161–171, 2011.

[25] Alena Shmygelska and Holger Hoos. An ant colony optimisation algorithm
for the 2d and 3d hydrophobic polar protein folding problem. BMC Bioin-
formatics, 6(1):30, 2005.

[26] Gordon Slade. The self-avoiding walk: a brief survey. Blath, Jochen (ed.) et
al., Surveys in stochastic processes. Selected papers based on the presenta-
tions at the 33rd conference on stochastic processes and their applications,
Berlin, Germany, July 27–31, 2009. Zürich: European Mathematical Soci-
ety (EMS). EMS Series of Congress Reports, 181-199 (2011)., 2011.

[27] Ron Unger and John Moult. Genetic algorithm for 3d protein folding sim-
ulations. In Proceedings of the 5th International Conference on Genetic
Algorithms, pages 581–588, San Francisco, CA, USA, 1993. Morgan Kauf-
mann Publishers Inc.

36

View publication statsView publication stats

https://www.researchgate.net/publication/271730096

