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Abstract

In this paper we revisit the Krylov multisplitting algorithm presented
in [9] which uses a sequential method to minimize the Krylov iterations
computed by a multisplitting algorithm. Our new algorithm is based on
a parallel multisplitting algorithm with few blocks of large size using a
parallel GMRES method inside each block and on a parallel Krylov min-
imization in order to improve the convergence. Some large scale experi-
ments with a 3D Poisson problem are presented with up to 8,192 cores.
They show the obtained improvements compared to a classical GMRES
both in terms of number of iterations and in terms of execution times.

1 Introduction

Iterative methods are used to solve large sparse linear systems of equations of
the form Ax = b because they are easier to parallelize than direct ones. Many
iterative methods have been proposed and adapted by different researchers. For
example, the GMRES method and the Conjugate Gradient method are very well
known and used [12]. Both methods are based on the Krylov subspace which
consists in forming a basis of a sequence of successive matrix powers times the
initial residual.

When solving large linear systems with many cores, iterative methods of-
ten suffer from scalability problems. This is due to their need for collective
communications to perform matrix-vector products and reduction operations.
Preconditioners can be used in order to increase the convergence of iterative
solvers. However, most of the good preconditioners are not scalable when thou-
sands of cores are used.

Traditional parallel iterative solvers are based on fine-grain computations
that frequently require data exchanges between computing nodes and have
global synchronizations that penalize the scalability [14]. Particularly, they are
more penalized on large scale architectures or on distributed platforms composed
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of distant clusters interconnected by a high-latency network. It is therefore im-
perative to develop coarse-grain based algorithms to reduce the communications
in the parallel iterative solvers. Two possible solutions consists either in using
asynchronous iterative methods [3] or in using multisplitting algorithms. In this
paper, we will reconsider the use of a multisplitting method. In opposition to
traditional multisplitting method that suffer from slow convergence, as proposed
in [9], the use of a minimization process can drastically improve the convergence.

Contributions:
In this work we develop a new parallel two-stage algorithm for large-scale clus-
ters. Our objective is to create a mix between Krylov based iterative methods
and the multisplitting method to improve scalability. In fact Krylov subspace
methods are well-known for their good convergence compared to other iterative
methods. So, our main contribution is to use the multisplitting method which
splits the problem to solve into different blocks in order to reduce the large
amount of communications and, to implement both inner and outer iterations
as Krylov subspace iterations in order to improve the convergence of the multi-
splitting algorithm.

The present paper is organized as follows. First, Section 2 presents some re-
lated works and the principle of multisplitting methods. Then, in Section 3 the
algorithm of our Krylov multisplitting method, based on inner-outer iterations,
is presented. Finally, in Section 4, the parallel experiments on Hector architec-
ture show the performances of the Krylov multisplitting algorithm compared to
the classical GMRES algorithm to solve a 3D Poisson problem.

2 Related works and presentation of the multi-
splitting method

A general framework to study parallel multisplitting methods has been pre-
sented in [11] by O’Leary and White. Convergence conditions are given for
the most general cases. Many authors have improved multisplitting algorithms
by proposing, for example, an asynchronous version [6] or convergence condi-
tions [4, 2] or other two-stage algorithms [8, 6].

In [9], the authors have proposed a parallel multisplitting algorithm in which
all the tasks except one are devoted to solve a sub-block of the splitting and to
send their local solutions to the first task which is in charge of combining the
vectors at each iteration. These vectors form a Krylov basis for which the first
task minimizes the error function over the basis to increase the convergence,
then the other tasks receive the updated solution until the convergence of the
global system.

In [7], the authors have developed practical implementations of multisplitting
algorithms to solve large scale linear systems. Inner solvers could be based on
sequential direct method with the LU method or sequential iterative one with
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GMRES.
In [5], the authors have designed a parallel multisplitting algorithm in which

large blocks are solved using a GMRES solver. The authors have performed large
scale experiments up-to 32,768 cores and they conclude that an asynchronous
multisplitting algorithm could be more efficient than traditional solvers on an
exascale architecture with hundreds of thousands of cores.

So, compared to these works, we propose in this paper a practical multisplit-
ting method based on parallel iterative blocks which gives better results than
classical GMRES method for the 3D Poisson problem we considered.

The key idea of a multisplitting method to solve a large system of linear
equations Ax = b is defined as follows. The first step consists in partitioning
the matrix A in L several ways

A = M` −N`, (1)

where for all ` ∈ {1, . . . , L} M` are non-singular matrices. Then the linear
system is solved by an iteration based on the obtained splittings as follows

xk+1 =

L∑
`=1

E`M
−1
` (N`x

k + b), k = 1, 2, 3, . . . (2)

where E` are non-negative and diagonal weighting matrices and their sum is
an identity matrix I. The convergence of such a method is dependent on the
condition

ρ(

L∑
`=1

E`M
−1
` N`) < 1. (3)

where ρ is the spectral radius of the square matrix.
The advantage of the multisplitting method is that at each iteration k there

are L different linear sub-systems

vk` = M−1` N`x
k−1
` +M−1` b, ` ∈ {1, . . . , L}, (4)

to be solved independently by a direct or an iterative method, where v` is the
solution of the local sub-system. Thus the computations of {v`}1≤`≤L may be
performed in parallel by a set of processors. A multisplitting method using an
iterative method as an inner solver is called an inner-outer iterative method or
a two-stage method. The results v` obtained from the different splittings (4)
are combined to compute solution x of the linear system by using the diagonal
weighting matrices

xk =

L∑
`=1

E`v
k
` , (5)

In the case where the diagonal weighting matrices E` have only zero and one
factors (i.e. v` are disjoint vectors), the multisplitting method is non-overlapping
and corresponds to the block Jacobi method.
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3 A two-stage method with a minimization

Let Ax = b be a given large and sparse linear system of n equations where
A ∈ Rn×n is a sparse square and non-singular matrix, x ∈ Rn is the solution
vector and b ∈ Rn is the right-hand side vector. We use a multisplitting method
to solve the linear system on a large computing platform in order to reduce
communications. Let the computing platform be composed of L blocks of pro-
cessors physically adjacent or geographically distant. In this work we apply the
block Jacobi multisplitting method to the linear system as follows A = [A1, . . . , AL]

x = [X1, . . . , XL]
b = [B1, . . . , BL]

(6)

where for ` ∈ {1, . . . , L}, A` is a rectangular block of size n`×n and X` and B`

are sub-vectors of size n` each, such that
∑

` n` = n. The splitting is performed
row-by-row without overlapping in such a way that successive rows of sparse
matrix A and both vectors x and b are assigned to a block of processors. So,
the multisplitting format of the linear system is defined as follows

∀` ∈ {1, . . . , L}, A``X` +

L∑
m=1
m6=`

A`mXm = B`, (7)

where A`m is a sub-block of size n`×nm of the rectangular matrix A`, Xm 6= X`

is a sub-vector of size nm of the solution vector x and
∑

m 6=` nm + n` = n, for
all m ∈ {1, . . . , L}.

Our multisplitting method proceeds by iteration to solve the linear system
in such a way that each sub-system

A``X` = Y`, such that

Y` = B` −
L∑

m=1
m 6=`

A`mXm, (8)

is solved independently by a block of processors and communications are required
to update the right-hand side vectors Y`, such that the vectors Xm represent the
data dependencies between the blocks. In this work, we use the parallel restarted
GMRES method [13] as an inner iteration method to solve sub-systems (8).
GMRES is one of the most used Krylov iterative methods to solve sparse linear
systems by minimizing the residuals over an orthonormal basis of a Krylov
subspace.

It should be noted that the convergence of the inner iterative solver for the
different sub-systems (8) does not necessarily involve the convergence of the
multisplitting algorithm. It strongly depends on the properties of the global
sparse linear system to be solved [11, 3]. Furthermore, the splitting of the
linear system among several blocks of processors increases the spectral radius
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of the iteration matrix, thereby slowing the convergence. In fact, the larger the
number of splittings is, the larger the spectral radius is. In this paper, our work
is based on the work presented in [9] to increase the convergence and improve
the scalability of the multisplitting methods.

Krylov subspace methods are well-known for their good convergence com-
pared to other iterative methods. In order to accelerate the convergence, we
implemented the outer iteration of our multisplitting solver as a Krylov itera-
tive method which minimizes some error function over a Krylov subspace [12].
The Krylov subspace that we used is spanned by a basis composed of successive
solutions issued from solving the L splittings (8)

S = {x1, x2, . . . , xs}, s ≤ n, (9)

where for j ∈ {1, . . . , s}, xj = [Xj
1 , . . . , X

j
L] is a solution of the global linear

system. The advantage of such a Krylov subspace is that we neither need an
orthonormal basis nor any synchronization between the different blocks to or-
thogonalize the generated basis. This avoids to perform other synchronizations
between the blocks of processors.

The multisplitting method is periodically restarted every s iterations with
a new initial guess x̃ = Sα which minimizes an error function, in our case it
minimizes the residuals ‖b−Ax‖2 over the Krylov subspace spanned by vectors
of S. So α is defined as the solution of the large overdetermined linear system.

Rα = b, (10)

where R = AS is a dense rectangular matrix of size n×s and s� n. This leads
us to solve a system of normal equations

RTRα = RT b, (11)

which is associated with the least squares problem

minimize ‖b−Rα‖2, (12)

where RT denotes the transpose of matrix R. Since R (i.e. AS) and b are
split among L blocks, the symmetric positive definite system (11) is solved in
parallel. Thus an iterative method would be more appropriate than a direct one
to solve this system. We use the parallel Conjugate Gradient method for the
normal equations CGNR [12, 10].

The main key points of our Krylov multisplitting method to solve a large
sparse linear system are given in Algorithm 1. This algorithm is based on a two-
stage method with a minimization using restarted GMRES iterative method as
an inner solver. It is executed in parallel by each block of processors. Matri-
ces and vectors with the subscript ` represent the local data for block `, where
` ∈ {1, . . . , L}. The two-stage solver uses two different parallel iterative algo-
rithms: the GMRES method to solve each splitting (8) on a block of processors,
and the CGNR method, executed periodically in parallel by all blocks to min-
imize the function error (12) over the Krylov subspace spanned by S. The
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Algorithm 1 A two-stage linear solver with inner iteration GMRES method

I1nput: A` (sparse sub-matrix), B` (right-hand side sub-vector)
Output: X` (solution sub-vector)

1: Load A`, B`

2: Set the initial guess x0

3: Set the minimizer x̃0 = x0

4: for k = 1, 2, 3, . . . until the global convergence do
5: Restart with x0 = x̃k−1:
6: for j = 1, 2, . . . , s do
7: Inner iteration solver: InnerSolver(x0, j)
8: Construct basis S: add column vector Xj

` to the matrix Sk
`

9: Exchange local values of Xj
` with the neighboring blocks

10: Compute dense matrix R: Rk,j
` =

∑L
i=1A`iX

j
i

11: end for
12: Minimization ‖b−Rα‖2: UpdateMinimizer(S`, R, b, k)
13: Local solution of linear system Ax = b: Xk

` = X̃k
`

14: Exchange the local minimizer X̃k
` with the neighboring blocks

15: end for

16: function InnerSolver(x0, j)

17: Compute local right-hand side Y` = B` −
∑L

m=1
m6=`

A`mX
0
m

18: Solving local splitting A``X
j
` = Y` using parallel GMRES method, such

that X0
` is the initial guess

19: return Xj
`

20: end function

21: function UpdateMinimizer(S`, R, b, k)
22: Solving normal equations (Rk)TRkαk = (Rk)T b in parallel by L blocks

using parallel CGNR method
23: Compute local minimizer X̃k

` = Sk
` α

k

24: return X̃k
`

25: end function

algorithm requires two global synchronizations between L blocks. The first one
is performed line 12 in Algorithm 1 to exchange local values of vector solution
x (i.e. the minimizer x̃) required to restart the multisplitting solver. The sec-
ond one is needed to construct the matrix R. We chose to perform this latter
synchronization s times in every outer iteration k (line 7 in Algorithm 1). This
is a straightforward way to compute the sparse matrix-dense matrix multiplica-
tion R = AS. We implemented all synchronizations by using message passing
collective communications of MPI library.
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4 Experiments

In order to illustrate the interest of our Krylov multisplitting algorithm, we have
compared its performances with those of a classical block Jacobi multisplitting
method and those of the GMRES method which is a commonly used method in
many situations. We have chosen to focus on only one problem which is very
simple to implement: a 3 dimension Poisson problem.{

∇u = f in ω
u = 0 on Γ = ∂ω

(13)

After discretization, with a finite difference scheme, a seven point stencil is
used. It is well-known that the spectral radius of matrices representing such
problems are very close to 1. Moreover, the larger the number of discretization
points is, the closer to 1 the spectral radius is. Hence, to solve a matrix obtained
for a 3D Poisson problem, the number of iterations is high. Using a precondi-
tioner it is possible to reduce the number of iterations but preconditioners are
not scalable when using many cores.

We have performed some experiments on an infiniband cluster of three Intel
Xeon quad-core E5620 CPUs of 2.40 GHz and 12 GB of memory. For the
GMRES code (alone and in both multisplitting versions) the restart parameter
is fixed to 16. The precision of the GMRES version is fixed to 1e-6. For the
multisplitting versions, there are two precisions, one for the external solver which
is fixed to 1e-6 and another one for the inner solver (GMRES) which is fixed
to 1e-10. It should be noted that a high precision is used but we also fixed
a maximum number of iterations for each internal step. In practice, we limit
the number of iterations in the internal step to 10. So an internal iteration is
finished when the precision is reached or when the maximum internal number
of iterations is reached. The precision and the maximum number of iterations
of CGNR method used by our Krylov multisplitting algorithm are fixed to 1e-
25 and 20 respectively. The size of the Krylov subspace basis S is fixed to 10
vectors.

Figures 1 and 2 show the scalability performances of GMRES, classical mul-
tisplitting and Krylov multisplitting methods: strong and weak scaling are pre-
sented respectively. We can remark from these figures that the performances of
our Krylov multisplitting method are better than those of GMRES and classical
multisplitting methods. In the experiments conducted in this work, our method
is approximately twice faster than the GMRES method and about 9 times faster
than the classical multisplitting method. Our multisplitting method uses a min-
imization step over a Krylov subspace which reduces the number of iterations
and accelerates the convergence. We can also remark that the performances of
the classical block Jacobi multisplitting method are the worst compared with
those of the other two methods. This is why in the following experiments we
compare the performances of our Krylov multisplitting method with only those
of the GMRES method.

In the following we present some experiments we could achieve out on the
Hector architecture, a UK high-end computing resource, funded by the UK Re-
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Figure 1: Strong scaling with 3 blocks of 4 cores each to solve a 3D Poisson
problem of size 1503 components

search Councils [1]. This is a Cray XE6 supercomputer, equipped with two
16-core AMD Opteron 2.3 GHz and 32 GB of memory. Machines are intercon-
nected with a 3D torus. The different parameters used by the GMRES and the
Krylov multisplitting codes are as those previously mentioned.

Table 1 shows the result of the experiments. The first column shows the size
of the 3D Poisson problem. The size is chosen in order to have approximately
50,000 components per core. The second column represents the number of cores
used. Between brackets, one can find the decomposition used for the Krylov
multisplitting. The third column and the sixth column respectively show the
execution time for the GMRES and the Krylov multisplitting codes. The fourth
and the seventh column describe the number of iterations. For the multisplitting
code, the total number of inner iterations is represented between brackets.

Pb size Nb. cores
GMRES Krylov Multisplitting

Ratio
Time (s) nb Iter. ∆ Time (s) nb Iter. ∆

4683 2,048 (2x1,024) 299.7 41,028 5.02e-8 48.4 691(6,146) 8.24e-08 6.19

5903 4,096 (2x2,048) 433.1 55,494 4.92e-7 74.1 1,101(8,211) 6.62e-08 5.84

7433 8,192 (2x4,096) 704.4 87,822 4.80e-07 151.2 3,061(14,914) 5.87e-08 4.65

7433 8,192 (4x2,048) 704.4 87,822 4.80e-07 110.3 1,531(12,721) 1.47e-07 6.39

Table 1: Results

From these experiments, it can be observed that the multisplitting version
is always faster than the GMRES version. The acceleration gain of the multi-
splitting version ranges between 4 and 6. It can be noticed that the number
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Figure 2: Weak scaling with 3 blocks of 4 cores each to solve a 3D Poisson
problem with approximately 280K components per core
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of iterations is drastically reduced with the multisplitting version even it is not
negligible. Moreover, with 8,192 cores, we can see that using 4 blocks of cores
gives a better performance than simply using 2 blocks. In fact, we can notice
that the precision with 2 blocks is slightly better but in both cases the precision
is under the specified threshold.

In Figure 3, the number of iterations per second is reported for both GMRES
and the multisplitting methods. It should be noted that we took only the inner
number of iterations (i.e. the GMRES iterations) for the multisplitting method.
Iterations of CGNR are not taken into account. From this figure, it can be seen
that the number of iterations per second is higher with GMRES but it is not
so different with the multisplitting method. For the case with 8, 192 cores, the
number of iterations per second with 4 blocks is approximately equal to 115. So
it is not different from GMRES.
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Figure 3: Number of iterations per second with the same parameters as in
Table 1 (weak scaling) with only blocks of cores

Final remarks:
It should be noted, on the one hand, that the development of a complete new
code usable with any kind of problem is a really long and fastidious task if
one is working from scratch. On the other hand, using an existing tool for
the inner solver is also quite difficult because it requires to establish a link
between the inner solver and the outer one. We plan to do that later with
engineers working specifically on that point. Moreover, we think that it is
very important to analyze the convergence of this method compared to other
methods. In this work, we have focused on the description of this method and its
performances with a typical application. Many other investigations are required
for this method as explained in the next section.
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5 Conclusion and perspectives

We have implemented a Krylov multisplitting method to solve sparse linear sys-
tems on large-scale computing platforms. We have developed a synchronous
two-stage method based on the block Jacobi multisplitting which uses GMRES
iterative method as an inner iteration. Our contribution in this paper is twofold.
First we provide a multi block decomposition that allows us to choose the ap-
propriate size of the blocks according to the architecures of the supercomputer.
Second, we have implemented the outer iteration of the multisplitting method as
a Krylov subspace method which minimizes some error function. This increases
the convergence and improves the scalability of the multisplitting method.

We have tested our multisplitting method to solve the sparse linear system
issued from the discretization of a 3D Poisson problem. We have compared its
performances to the classical GMRES method on a supercomputer composed of
2,048 up-to 8,192 cores. The experimental results showed that the multisplitting
method is about 4 to 6 times faster than the GMRES method for different sizes
of the problem split into 2 or 4 blocks when using the multisplitting method.
Indeed, the GMRES method has difficulties to scale with many cores while the
Krylov multisplitting method allows to hide latency and reduce the inter-block
communications.

In future works, we plan to conduct experiments on larger numbers of cores
and test the scalability of our Krylov multisplitting method. It would be in-
teresting to validate its performances to solve other linear/nonlinear and sym-
metric/nonsymmetric problems. Moreover, we intend to develop multisplitting
methods based on asynchronous iterations in which communications are over-
lapped by computations. These methods would be interesting for platforms
composed of distant clusters interconnected by a high-latency network. In addi-
tion, we intend to investigate the convergence improvements of our method by
using preconditioning techniques for Krylov iterative methods and multisplitting
methods with overlapping blocks.
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