
A parallel implementation of the Durand-Kerner
algorithm for polynomial root-finding on GPU

Kahina Ghidouche1, Raphaël Couturier2 and Abderrahmane Sider1

1LIMED Laboratory, University A-Mira of Bejaia,
 Targa Ouzemour streets, Bejaia, Algerie

Kahina.ghidouche@gmail.com, ar.sider@univ-bejaia.dz

2FEMTO-ST Institute, University of Franche Comte, IUT
Belfort-Montbéliard, 19 Av. du Maréchal Juin, BP 527,

90016 Belfort CEDEX, France
raphael.couturier@univ-fcomte.fr

Abstract— In this article we present a parallel

implementation of the Durand-Kerner algorithm to find roots of
polynomials of high degree on a GPU architecture (Graphics
Processing Unit). We have implemented both a CPU version in C
and a GPU compatible version with CUDA. The main result of
our work is a parallel implementation that is 10 times as fast as
its sequential counterpart on a single CPU for high degree
polynomials that is greater than about 48,000.

Keywords— polynomial root-finding, high degree, iterative
methods, Durant-Kerner method, GPU, CUDA, Parallelization.

I. INTRODUCTION

 The root finding problem consists in retrieving all values
of a real or complex variable x verifying p(x) = 0. p is a
real/complex function in Rn or Cn. In this article we suppose
that p is a polynomial of degree n, that is to say, p is of the
form i=0,…,n-1 where ai is a real/complex
constant called the i_th coefficient and an-1≠0. It is well known
that the number of roots of a polynomial of degree n is exactly
n.
 The issue of finding the roots of polynomials of very high
degrees arises in many complex problems in various fields,
such as algebra, biology, finance, physics or climatology [1].
In algebra for example, finding eigenvalues or eigenvectors of
any real/complex matrix amounts to finding the roots of the
so-called characteristic polynomial.
Different methods of resolution exist for polynomial root-
finding and they usually are classified in direct and iterative
methods. Direct methods for finding root of polynomials only
exist for n=1 and n=2. But for larger degrees, approximation
methods are the only way to solve them. An approximation or
iterative method usually starts with an initial solution (the
initial guess) that is successively evolved until the roots are
approximated with a certain precision. Traditionally, the
Newton method serves to iteratively solve fixed point
problems of the form x = f(x). For the FRP case, The Newton-
Raphson method is used by simply transforming the problem
of solving p(x)=0 into one of form x=f(x).

However, the extraction of roots of polynomial is a very
expensive process in execution time. For example, in [6]
authors reported execution times of 3,300s for a polynomial of
degree 40,000.

Graphics Processing Units (GPU), equipping personal
computers, once used primarily for image processing
operations have, nevertheless, seen a tremendous evolution of
their computation power that resulted in scientists and
engineers turning to them to benefit from their huge
capabilities in always higher performance demanding
applications. This led to a new programming context called
General Processing GPU Computing (GP-GPU).
Consequently, very important savings of time with many
scientific applications have been successfully obtained [3,4].

 The main objective of this work is to parallelize a well
known algorithm for the computation of polynomial zeros
named the Durand-Kerner method, and to experimentally
study its performance on a GPU architecture using various
high degree polynomials.

The following of this paper is organized as follows. In
Section II, we recall the mathematical description of the
Durand-Kerner method. Then we present GPUs and their
programming in section III. Afterwards, we detail the
parallelization of the algorithm and its implementation in the
IVth section. Finally we analyze experimental results,
allowing us to conclude our work.

II. THE DURAND-KERNER METHOD

An iterative method proceeds by successively refining
initial solution x0 until it converges. The solution of an
iterative method, usually noted x* verifies x* = f(x*) .
Generally, an iterative algorithm has the following form:

 (1)

where kx is the solution at iteration k,
1+kx the solution at

iteration k+1 and f is the iterative function. The Durand-
Kerner method consists of four principal phases [5,6] that are :
initialization of the polynomial, initialization of the solution,
applying the iterative function Hi and a termination condition.

A. Phase 1 : initialization of the polynomial P(Z)
 The initialization of the polynomial with complex
coefficients P(z) is carried out as follows:

(2)

L,,kforxfx kk 21)(1 ==+

0)a 1,(a with .a P(z) C, n0

n

0i
i ≠==∈∀ ∑

=

−in
i za

∑= ii xap

B. Phase 2 : initialization of the vector Z(0)

The second phase of the method consists in initializing the
vector Z(0). This initialization is important because the
components of the vector must be different from each other.
To achieve this, the Gugenheimer method is used in this work.
A radius σ is determined from the polynomial coefficients
such that initial roots are placed at equidistance on a circle of
radius σ. The computation of σ is carried according to
Equation (3) where u and v are in turn computed as shown in
Equation (4) where each ui and each vi is the result of
Equation (5).

 (3)

 (4)

 (5)

Then the initial guesses for the n roots are evenly placed
around the circle of radius σ:

(6)

Where

.
2

n

jj

π
θ = (7)

C. Phase 3 : Applying the Hi iterative function

The third phase of the method is to apply the iterative
function Hi which will make it possible to converge to roots
solution of the polynomial, provided that all the roots are
different.

 (8)

D. Phase 4 : A termination condition

At the end of each application of Hi, a stop condition is
verified. We have two possibilities to implement it.

• The first solution consists in stopping the iterative
process when the whole of the modules of the roots
are lower than a fixed valueε , that is :

(9)

• In the second solution, we stop the iterative function
when the roots are stable, i.e. the method converges
sufficiently:

 [] .; ,1i
)(

)1()(

ε<−∈∀
−

k
i

k
i

k
i

z

zz
n (10)

It should be noticed that our algorithm follows the
principle of improvement of the method of Durand-Kerner
described in [5,6]. Thus, when the evaluation of a polynomial
leads to numbers exceeding the storage capacity of the double

type, we evaluate the logarithm of the polynomial. This
solution is interesting to find the roots of high degree
polynomials.

III. PARALLELISATION OF THE DURAND-KERNER

ALGORITHM

 Before dwelling on the parallelization, we present the
GPU architecture and the CUDA (Compute Unified Device
Architecture) platform which are the tools we have used to
parallelize the Durand-Kerner algorithm.

A. The GPU architecture

The graphics processor of GPUs was initially devised to
process graphic applications and 3D displays; that is say, to
ensure visualization functions. For example, products like
GeForce and Quadro, two ranges of GPUs proposed by
nVIDIA, are respectively intended for the graphics general
public and professional visualization.

A GPU is a graphic processor connected with a traditional
processor (CPU) via a PCI-Express interface (see Fig 1.). It is
often considered as an accelerator of intensive arithmetic
operations of an application executed on a CPU. It derives its
computing power from its massively parallel architecture.
Indeed, unlike CPU architecture, a GPU is composed of
hundreds or even thousands of streaming processors (SP), also
called cores, and organized in several blocks of processors
called multi-processors (SM or SMX). Fig2 shows a
comparison between the architecture of a CPU and that of a
Fermi GPU [7].

Fig .1. Example of CPU equipped with GPU.

The massively parallel architecture of GPUs offers
performances and very interesting computing capacities to
solve new complex problems of ever increasing sizes. In order
to use these GPUs, several platforms have been developed to
facilitate their programming and usage. CUDA from nVIDIA
and OpenCL from the consortium Khronos group are two very
popular development tools that make it easier to write parallel
programs on those target GPUs. In this work, we use CUDA,

2

vu +=σ

1-n

0i
i

1

0i
i

i
1

1
i

max vn.

v
 v

u max.

u
u

=

−

=

=

=
∑∑

==

n

n

i

n

i

n

 .
2

1
 v.2u

i-n

1

i

1

i
i

ni
i a

a
a ==

[]

)(

)P(z
-z (z)H ; ,1i

1

i
ii

∏
=

≠
=

−
=∈∀

nj

ij
j

ji zz

n

[] .)P(z ; ,1i i ε<∈∀ n

,1,...,0).sin(cos)0(−=+= njiz jjj σθθ

Fig. 2. Comparison of the number of cores in a CPU and a GPU

A CPU with 8 Cores A Fermi GPU with 512 Cores

RAM

Multiprocessor 1
32 cores

Multiprocessor 3
32 cores

Multiprocessor 5
32 cores

Multiprocessor 15
32 cores

Multiprocessor 0
32 cores

Multiprocessor 2
32 cores

Multiprocessor 4
32 cores

Multiprocessor 6
32 cores

Core 0

Core 2

Core 4

Core 6

Core 1

Core 3

Core 5

Core 7

RAM

which is the reason for which the next subsection recalls some
of its basic properties.

B. CUDA architecture

 CUDA has been developed by NVIDIA and it enables
developers to increase the performances of their computing
programs by exploiting the huge computing power of the
graphic processors.

It is based on the C/C++ programming language with some
extensions that admit the expression of dense and complex
data in a context of parallelism. An application written in
CUDA is a heterogeneous program that executes on a
processor (CPU) equipped with a graphics board (GPU).
Indeed, in a CUDA program, the codes to be executed by the
CPU are separately defined from those to be executed by the
GPU. All the intensive arithmetic operations are executed by
the GPU as a kernel form. A kernel is a procedure written in
CUDA and defined by a heading __global__, which means
that it is to be executed by the GPU. In addition, the CPU
executes all the sequential operations that cannot be executed
in parallel and controls the execution of the kernels on the
GPU as well as data communication between the CPU
memory and the GPU memory.

 CUDA is based on the model of parallel programming
single instruction multiple threads SIMT (Single Instruction,
Multiple Thread) model. So, each kernel is executed in
parallel by thousands, even millions, of threads. At the level of
a GPU, the threads of the same kernel are organized in grids
of several blocks of threads which are distributed more or less
equitably, on the whole of the multiprocessors of the GPU (see
Fig .3) [3].

Fig. 3. Example block execution threads on a two-dimensional on GPU with
3 multiprocessors (8 cores)

C. Parallel version of the Durand-Kerner algorithm

 Like any parallel code, a GPU parallel implementation first
requires to determine the sequential tasks and the
parallelizable parts of the sequential version of the

program/algorithm. In our case, all the operations that are easy
to execute in parallel must be made by the GPU to accelerate
the execution of the application. On the other hand, all the
sequential operations and the operations that have data
dependencies between threads or recursive computations must
be executed by only one CUDA or CPU thread. In general all
the data must stay on the GPU because memory transfers are
expensive.

In our case we parallelized phase 3 and phase 4 of the
Durand-Kerner method. For phase 3 we have two kernels, the
first named save is used to save vector ZK-1 and the kernel
update is used to update the Zk vector. In phase 4 a kernel is
created to test the convergence of the method. In order to
compute function H, we have two possibilities: either to use
the Jacobi method, or the Gauss-Seidel method which uses the
most recent computed roots. It is well known that the Gauss-
Seidel mode converges more quickly. So, for both versions of
the algorithm we used the Gauss-Seidel mode of iteration. To
parallelize the code, we created kernels and many functions to
be executed on the GPU for all the operations dealing with the
computation on complex numbers and the evaluation of the
polynomials. As said previously, we managed both functions
of evaluation of a polynomial: the normal method, based on
the method of Horner and the method based on the logarithm
of the polynomial. All these methods were rather long to
implement, as the development of corresponding kernels with
CUDA is longer than on a CPU host. This comes in particular
from the fact that it is very difficult to debug CUDA running
threads like threads on a CPU host. In the following paragraph
Algorithm 1 shows a sequential CPU implementation whereas
Algorithm 2 shows the GPU parallel version.

1 Compute initial values {z 0;…; z n-1 }
2 Let k = 1;
3 do
3
4 for j = 0… n-1
5
6

7

8 k=k+1;
9 while

Algorithm 1. A Durand-Kerner algorithm sequential implementation on CPU

;0 max =∆ zlet

;1 k
j

k
j zz =−

);(1−= k
i

k
j zHz

k
j

k
j

k
j

z

zz
z

1

maxset
−−

=∆

;max ε>z

GPU with 3 multiprocessor

SM0 SM 1 SM 2

SP 1

Multiprocessor with 8 cores

SP 2 SP 3 SP 4 SP 5 SP 6 SP 7 SP 0

Th1ead
(1,0)

Thread
(1,1)

Thread
(1,2)

Thread
(1,3)

Thread
(0,0)

Thread
(0,1)

Thread
(0,2)

Thread
(0,3)

Thread
(3,0)

Thread
(3,1)

Thread
(3,2)

Thread
(3,3)

Thread
(2,0)

Thread
(2,1)

Thread
(2,2)

Thread
(2,3)

Thread
(5,0)

Thread
(5,1)

Thread
(5,2)

Thread
(5,3)

Thread
(4,0)

Thread
(4,1)

Thread
(4,2)

Thread
(4,3)

Thread
(7,0)

Thread
(7,1)

Thread
(7,2)

Thread
(7,3)

Thread
(6,0)

Thread
(6,1)

Thread
(6,2)

Thread
(6,3)

Grille of threads blocks

Block (0,0)

Block (0,1) Block (1,1)

Block (1,0)

Block (2,1)

Block (2,0)

1 Compute initial values {z 0;…; z n-1 }
2 do
3
4 copy Z, ∆zmaxi into the device memory
d_Z, d_∆zmax
5 <DimGrid,DimBloc> kernel_save(d_Zk-1);
6 <DimGrid,DimBloc> kernel_update(d_zk);
7 <DimGrid,DimBloc> kernel_ testConverge
(d_∆zmax,d_Z

k,d_Zk-1);
8 k=k+1;
9 while ∆zmax>ε;
10 copy the result into the host memory

Algorithm 2. A Durand-Kerner algorithm parallel implementation on GPU

For the GPU version, kernels serve to make the

computations of lines 5, 6 and 7 of the CPU algorithm. We
can notice that the “for loop” does not exist anymore in the
parallel version because kernels are executed by all the
threads. In each kernel call in the code, we recall that there are
indeed DimGrid blocks of threads consisting of DimBloc
threads by block. Thus, we use as many threads as the number
of roots of the studied polynomial. It results that each thread
computes one root at time. To achieve this, we adapt the
values of DimGrid and DimBloc according to the studied
polynomial, and before launching the kernel.

 In what follows, we report the CPU and GPU results of an
experimental study carried on different high degree
polynomials.

IV. EXPERIMENTS

A. Definition of the polynomial used

We use a polynomial of the following form for which the
roots are distributed on 2 distinct circles:

)-α)(z-α(z; P(z) Nm mC,αα
mm*

2
2

1
1

2121 ,, =∈∀∈∀ (11)
This form allows to associate roots having two different

modules and thus to work on a polynomial constituted of four
nonzero terms.

B. Study condition

In order to have representative average values, for each
point of our curves we measured the roots finding of 10
different polynomials.

In our experiments two parameters are studied: the polynomial
degree and the execution time of our program to converge on
the solution. The polynomial degree allows us to validate that
our algorithm is powerful with high degree polynomials. The
execution time remains of course the element-key which
justifies our work of parallelization.

For our tests we used a CPU Intel(R) Xeon(R) CPU
E5620@2.40GHz and a GPU Tesla C2070 (with 6 Go of ram).

C. Comparative study

We initially carried out a comparative study between the
Gauss-Seidel iterations and the Jacobi iterations for both
sequential and parallel versions. Then we carried out a test

with various sizes of polynomials. Finally we evaluated the
influence of the size of the threads blocks.

1) A comparative study between Gauss seidel iteration and
Jacobi iteration

Fig . 4 A comparative study of both the Gauss seidel and the Jacobi iteration
for the Durand-Kerner algorithm on GPU and CPU

Figure 4 shows a comparison between the Gauss Seidel
iterations and the Jacobi iterations for both the parallel and
sequential versions of the algorithms. We clearly see that the
Gauss Seidel method converges faster than the Jacobi iteration
which has a very slow convergence rate.

2) The Durand-Kerner algorithm with the high degree
polynomials.

In this experimentation we compare the sequential and
parallel versions of the Durand-Kerner algorithm with high
degree polynomials, i.e. more than 20,000. Figure 5 shows the
execution times for polynomials of various degrees.

Fig. 5. Comparison of the execution times of the Durand-Kerner algorithm on
CPU and GPU

This curve shows a comparison of execution times
between the parallel and sequential version of the Durand-
Kerner algorithm with polynomial degrees ranging from 500
to 50,000. During our test we noticed that the parallel version
executes a polynomial of size 48,000 in 373.944s whereas the
sequential version requires 4,510.22s. So, the parallel version
is executed approximately 10 times faster than the sequential
version. Furthermore, we verified that the number of iterations
is the same. This reduction of time allows us to compute roots

;0 max =∆ zlet

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 10000 20000 30000 40000 50000 60000

th
e

ex
ec

ut
io

n
tim

es
 (

s)

polynomial degree

Durand Kerner on
GPU

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2000 4000 6000

E
xe

cu
tio

n
tim

e
(s

)

polynomial degree

Gauss seidel
iteration on GPU

Jacobi iteration
on GPU

Gauss seidel
iteration on CPU

Jacobi iteration
on CPU

of polynomial of more important degrees at the same time
than with a CPU.

3) Influence of the number of threads per block

 It is also interesting to see the influence of the number of
threads per block on the execution time. For that, we chose 10
different polynomials of degree 35,000.

Fig .6. Influence of the number of threads per block on the execution time.

The curve shows the impact of a different number of

threads per block over the execution time. The number of
threads per block varies from 8 to 1,024. It can be noticed that
the larger this one is, the more the execution time decreases.
On the graph we can remark that the best execution time is
around 150s with 1024 threads per bloc.

V. CONCLUSION AND PROSPECTIVE

The GPU architecture is well adapted to intensive
computing. We parallelized the Durand-Kerner algorithm for
polynomial roots-finding and we obtained encouraging results.
Indeed, the experimental study confirms that our program
determines the same roots than the sequential version for high
degrees. The contribution of the parallel solution allows us to
accelerate the execution time and to study even more
important degrees of polynomial. The parallelization of this
type of application is thus completely justified and confirmed
by a speed up of 10.

As perspective, it is interesting to compute and find more
roots so we think to develop this solution on several GPUs
with a cluster of GPUs. Finally, we plan to study other
algorithms of roots finding polynomials and their implantation
on GPUs.

VI. REFERNECES
[1] Bini Dario Andrea. Numerical computation of polynomial zeros by

means of Aberth’s method. Numerical Algorithms 13 (1996), 179–200.

[2] Sagraloff Michael., and Chee. K Yap. A simple but exact and efficient
algorithm for complex root isolation. In Proceedings of ISSAC’2011
(2011), pp. 353–360.

[3] Raphaël Couturier, Designing Scientific Applications on GPUs,
Numerical Analysis and Scientific Computing, 2013. Chapman and
Hall/CRC

[4] Lilia Ziane Khodja, Ming Chau, Raphaël Couturier, Jacques Bahi, Pierre
Spitéri, Parallel solution of American option derivatives on GPU
clusters, Computers and Mathematics with Applications 65(11): 1830-
1848 (2013)

[5] Karim Rhofir, François Spies, and Jean-Claude Miellou.
Perfectionnements de la méthode asynchrone de Durand-Kerner pour les
polynômes complexes. Calculateurs Parallèles, 10(4):449--458, 1998.

[6] Raphaël Couturier, François Spies. Extraction de racines dans des
polynômes creux de degré élevé. RSRCP (Réseaux et Systèmes
Répartis, Calculateurs Parallèles), Numéro thématique : Algorithmes
itératifs parallèles et distribués, 13(1):67--81, 2001.

[7] NVIDIA Corporation. NVIDIA CUDA C Programming
Guide.Version4.2,2012.http://developer.download.nvidia.com/compute/
DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf.

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500

E
xe

cu
tio

n
tim

e
(s

)

number of threads per block

Execution time

