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Abstract— In this article we present a parallel 

implementation of the Durand-Kerner algorithm to find roots of 
polynomials of high degree on a GPU architecture (Graphics 
Processing Unit). We have implemented both a CPU version in C 
and a GPU compatible version with CUDA. The main result of 
our work is a parallel implementation that is 10 times as fast as 
its sequential counterpart on a single CPU for high degree 
polynomials that is greater than about 48,000. 
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I. INTRODUCTION  

 The root finding problem consists in retrieving all values 
of a real or complex variable x verifying p(x) = 0. p is a 
real/complex function in Rn or Cn. In this article we suppose 
that p is a polynomial of degree n, that is to say, p is of the 
form                    i=0,…,n-1 where ai is a real/complex 
constant called the i_th coefficient and an-1≠0. It is well known 
that the number of roots of a polynomial of degree n is exactly 
n. 
 The issue of finding the roots of polynomials of very high 
degrees arises in many complex problems in various fields, 
such as algebra, biology, finance, physics or climatology [1]. 
In algebra for example, finding eigenvalues or eigenvectors of 
any real/complex matrix amounts to finding the roots of the 
so-called characteristic polynomial.  
Different methods of resolution exist for polynomial root-
finding and they usually are classified in direct and iterative 
methods. Direct methods for finding root of polynomials only 
exist for n=1 and n=2. But for larger degrees, approximation 
methods are the only way to solve them. An approximation or 
iterative method usually starts with an initial solution (the 
initial guess) that is successively evolved until the roots are 
approximated with a certain precision. Traditionally, the 
Newton method serves to iteratively solve fixed point 
problems of the form x = f(x). For the FRP case, The Newton-
Raphson method is used by simply transforming the problem 
of solving p(x)=0 into one of form x=f(x). 

However, the extraction of roots of polynomial is a very 
expensive process in execution time. For example, in [6] 
authors reported execution times of 3,300s for a polynomial of 
degree 40,000. 

Graphics Processing Units (GPU), equipping personal 
computers, once used primarily for image processing 
operations have, nevertheless, seen a tremendous evolution of 
their computation power that resulted in scientists and 
engineers turning to them to benefit from their huge 
capabilities in always higher performance demanding 
applications. This led to a new programming context called 
General Processing GPU Computing (GP-GPU). 
Consequently, very important savings of time with many 
scientific applications have been successfully obtained [3,4]. 

 The main objective of this work is to parallelize a well 
known algorithm for the computation of polynomial zeros 
named the Durand-Kerner method, and to experimentally 
study its performance on a GPU architecture using various 
high degree polynomials.  

The following of this paper is organized as follows. In 
Section II, we recall the mathematical description of the 
Durand-Kerner method. Then we present GPUs and their 
programming in section III. Afterwards, we detail the 
parallelization of the algorithm and its implementation in the 
IVth section. Finally we analyze experimental results, 
allowing us to conclude our work. 

II. THE  DURAND-KERNER  METHOD 

An iterative method proceeds by successively refining 
initial solution x0 until it converges. The solution of an 
iterative method, usually noted x* verifies x* = f(x*) . 
Generally, an iterative algorithm has the following form: 

  (1) 

where kx  is the solution at iteration k, 
1+kx  the solution at 

iteration k+1 and f is the iterative function. The Durand-
Kerner method consists of four principal phases [5,6] that are : 
initialization of the polynomial, initialization of the solution, 
applying the iterative function Hi and a termination condition. 

A. Phase 1 : initialization of the polynomial P(Z)                                                                                                                                            
 The initialization of the polynomial with complex 
coefficients P(z) is carried out as follows: 
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B. Phase 2 : initialization of the vector Z(0) 

The second phase of the method consists in initializing the 
vector Z(0). This initialization is important because the 
components of the vector must be different from each other. 
To achieve this, the Gugenheimer method is used in this work. 
A radius σ is determined from the polynomial coefficients 
such that initial roots are placed at equidistance on a circle of 
radius σ. The computation of σ is carried according to 
Equation (3) where u and v are in turn computed as shown in 
Equation (4) where each ui and each vi is the result of 
Equation (5).   
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Then the initial guesses for the n roots are evenly placed 
around the circle of radius σ: 
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C. Phase 3 : Applying the Hi iterative function   

The third phase of the method is to apply the iterative 
function Hi which will make it possible to converge to roots 
solution of the polynomial, provided that all the roots are 
different. 

       (8) 

 
 

D. Phase 4 : A termination condition 

At the end of each application of Hi, a stop condition is 
verified. We have two possibilities to implement it. 

• The first solution consists in stopping the iterative 
process when the whole of the modules of the roots 
are lower than a fixed valueε , that is : 

(9) 

• In the second solution, we stop the iterative function 
when the roots are stable, i.e. the method converges 
sufficiently: 
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It should be noticed that our algorithm follows the 
principle of improvement of the method of Durand-Kerner 
described in [5,6]. Thus, when the evaluation of a polynomial 
leads to numbers exceeding the storage capacity of the double 

type, we evaluate the logarithm of the polynomial. This 
solution is interesting to find the roots of high degree 
polynomials. 

III.  PARALLELISATION OF THE DURAND-KERNER 

ALGORITHM 

 Before dwelling on the parallelization, we present the 
GPU architecture and the CUDA (Compute Unified Device 
Architecture) platform which are the tools we have used to 
parallelize the Durand-Kerner algorithm. 

A.   The GPU architecture 

The graphics processor of GPUs was initially devised to 
process graphic applications and 3D displays; that is say, to 
ensure visualization functions. For example, products like 
GeForce and Quadro, two ranges of GPUs proposed by 
nVIDIA, are respectively intended for the graphics general 
public and professional visualization.  

A GPU is a graphic processor connected with a traditional 
processor (CPU) via a PCI-Express interface (see Fig 1.). It is 
often considered as an accelerator of intensive arithmetic 
operations of an application executed on a CPU. It derives its 
computing power from its massively parallel architecture. 
Indeed, unlike CPU architecture, a GPU is composed of 
hundreds or even thousands of streaming processors (SP), also 
called cores, and organized in several blocks of processors 
called multi-processors (SM or SMX). Fig2 shows a 
comparison between the architecture of a CPU and that of a 
Fermi GPU [7]. 

Fig .1. Example of CPU equipped with GPU. 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The massively parallel architecture of GPUs offers 
performances and very interesting computing capacities to 
solve new complex problems of ever increasing sizes. In order 
to use these GPUs, several platforms have been developed to 
facilitate their programming and usage. CUDA from nVIDIA 
and OpenCL from the consortium Khronos group are two very 
popular development tools that make it easier to write parallel 
programs on those target GPUs. In this work, we use CUDA, 
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Fig. 2.  Comparison of the number of cores in a CPU and a GPU 

A CPU with 8 Cores A Fermi GPU with 512 Cores 
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which is the reason for which the next subsection recalls some 
of its basic properties.  

B. CUDA architecture  

 CUDA has been developed by NVIDIA and it enables 
developers to increase the performances of their computing 
programs by exploiting the huge computing power of the 
graphic processors. 

It is based on the C/C++ programming language with some 
extensions that admit the expression of dense and complex 
data in a context of parallelism. An application written in 
CUDA is a heterogeneous program that executes on a 
processor (CPU) equipped with a graphics board (GPU). 
Indeed, in a CUDA program, the codes to be executed by the 
CPU are separately defined from those to be executed by the 
GPU. All the intensive arithmetic operations are executed by 
the GPU as a kernel form. A kernel is a procedure written in 
CUDA and defined by a heading __global__, which means 
that it is to be executed by the GPU. In addition, the CPU 
executes all the sequential operations that cannot be executed 
in parallel and controls the execution of the kernels on the 
GPU as well as data communication between the CPU 
memory and the GPU memory.  

 CUDA is based on the model of parallel programming 
single instruction multiple threads SIMT (Single Instruction, 
Multiple Thread) model. So, each kernel is executed in 
parallel by thousands, even millions, of threads. At the level of 
a GPU, the threads of the same kernel are  organized in grids 
of several blocks of threads which are distributed more or less 
equitably, on the whole of the multiprocessors of the GPU (see 
Fig .3) [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Example block execution threads on a two-dimensional on GPU with  
3 multiprocessors (8 cores) 

C. Parallel version of the Durand-Kerner algorithm  

 Like any parallel code, a GPU parallel implementation first 
requires to determine the sequential tasks and the 
parallelizable parts of the sequential version of the 

program/algorithm. In our case, all the operations that are easy 
to execute in parallel must be made by the GPU to accelerate 
the execution of the application. On the other hand, all the 
sequential operations and the operations that have data 
dependencies between threads or recursive computations must 
be executed by only one CUDA or CPU thread. In general all 
the data must stay on the GPU because memory transfers are 
expensive. 

In our case we parallelized phase 3 and phase 4 of the 
Durand-Kerner method. For phase 3 we have two kernels, the 
first named save is used to save vector ZK-1 and the kernel 
update is used to update the Zk vector. In phase 4 a kernel is 
created to test the convergence of the method. In order to 
compute function H, we have two possibilities: either to use 
the Jacobi method, or the Gauss-Seidel method which uses the 
most recent computed roots. It is well known that the Gauss-
Seidel mode converges more quickly. So, for both versions of 
the algorithm we used the Gauss-Seidel mode of iteration. To 
parallelize the code, we created kernels and many functions to 
be executed on the GPU for all the operations dealing with the 
computation on complex numbers and the evaluation of the 
polynomials. As said previously, we managed both functions 
of evaluation of a polynomial: the normal method, based on 
the method of Horner and the method based on the logarithm 
of the polynomial. All these methods were rather long to 
implement, as the development of corresponding kernels with 
CUDA is longer than on a CPU host. This comes in particular 
from the fact that it is very difficult to debug CUDA running 
threads like threads on a CPU host. In the following paragraph 
Algorithm 1 shows a sequential CPU implementation whereas 
Algorithm 2 shows the GPU parallel version. 

 

1 Compute initial values {z 0;…; z n-1 } 
2 Let k = 1; 
3 do 
3   
4 for j = 0… n-1 
5  
6 
 
7 
 
8 k=k+1;   
9 while 
 
Algorithm 1. A Durand-Kerner algorithm sequential implementation on CPU 
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1 Compute initial values {z 0;…; z n-1 } 
2 do 
3   
4 copy Z, ∆zmaxi into the device memory 
d_Z, d_∆zmax 
5 <DimGrid,DimBloc> kernel_save( d_Zk-1); 
6 <DimGrid,DimBloc> kernel_update( d_zk); 
7 <DimGrid,DimBloc> kernel_ testConverge 
( d_∆zmax,d_Z

k,d_Zk-1); 
8 k=k+1; 
9 while ∆zmax>ε;  
10 copy the result into the host memory 

 
Algorithm 2. A Durand-Kerner algorithm parallel implementation on GPU 

 
For the GPU version, kernels serve to make the 

computations of lines 5, 6 and 7 of the CPU algorithm. We 
can notice that the “for loop” does not exist anymore in the 
parallel version because kernels are executed by all the 
threads. In each kernel call in the code, we recall that there are 
indeed DimGrid blocks of threads consisting of DimBloc 
threads by block. Thus, we use as many threads as the number 
of roots of the studied polynomial. It results that each thread 
computes one root at time. To achieve this, we adapt the 
values of DimGrid and DimBloc according to the studied 
polynomial, and before launching the kernel. 

 In what follows, we report the CPU and GPU results of an 
experimental study carried on different high degree 
polynomials. 

IV.  EXPERIMENTS  

A. Definition of the polynomial used  

We use a polynomial of the following form for which the 
roots are distributed on 2 distinct circles: 

)-α)(z-α(z; P(z) Nm mC,αα
mm*

2
2

1
1

2121 ,, =∈∀∈∀          (11) 
This form allows to associate roots having two different 

modules and thus to work on a polynomial constituted of four 
nonzero terms.  

B. Study condition  

In order to have representative average values, for each 
point of our curves we measured the roots finding of 10 
different polynomials. 

In our experiments two parameters are studied: the polynomial 
degree and the execution time of our program to converge on 
the solution. The polynomial degree allows us to validate that 
our algorithm is powerful with high degree polynomials. The 
execution time remains of course the element-key which 
justifies our work of parallelization.  

For our tests we used a CPU Intel(R) Xeon(R) CPU 
E5620@2.40GHz and a GPU Tesla C2070 (with 6 Go of ram). 

C. Comparative study 

We initially carried out a comparative study between the 
Gauss-Seidel iterations and the Jacobi iterations for both 
sequential and parallel versions. Then we carried out a test 

with various sizes of polynomials. Finally we evaluated the 
influence of the size of the threads blocks. 

1) A comparative study between Gauss seidel iteration and 
Jacobi iteration 

 
Fig . 4 A comparative study of both the Gauss seidel and the Jacobi iteration 
for the Durand-Kerner algorithm on GPU and CPU 
 
Figure 4 shows a comparison between the Gauss Seidel 
iterations and the Jacobi iterations for both the parallel and 
sequential versions of the algorithms. We clearly see that the 
Gauss Seidel method converges faster than the Jacobi iteration 
which has a very slow convergence rate. 
 

2) The Durand-Kerner algorithm with the high degree 
polynomials.  

In this experimentation we compare the sequential and 
parallel versions of the Durand-Kerner algorithm with high 
degree polynomials, i.e. more than 20,000. Figure 5 shows the 
execution times for polynomials of various degrees. 

 
Fig. 5. Comparison of the execution times of the Durand-Kerner algorithm on 
CPU and GPU  

This curve shows a comparison of execution times 
between the parallel and sequential version of the Durand-
Kerner algorithm with polynomial degrees ranging from 500 
to 50,000. During our test we noticed that the parallel version 
executes a polynomial of size 48,000 in 373.944s whereas the 
sequential version requires 4,510.22s. So, the parallel version 
is executed approximately 10 times faster than the sequential 
version. Furthermore, we verified that the number of iterations 
is the same. This reduction of time allows us to compute roots 
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of polynomial of more important degrees at the same time 
than with a CPU. 

3) Influence of the number of threads per block 
 

 It is also interesting to see the influence of the number of 
threads per block on the execution time. For that, we chose 10 
different polynomials of degree 35,000. 

 

Fig .6. Influence of the number of threads per block on the execution time. 
 
The curve shows the impact of a different number of 

threads per block over the execution time. The number of 
threads per block varies from 8 to 1,024. It can be noticed that 
the larger this one is, the more the execution time decreases.  
On the graph we can remark that the best execution time is 
around 150s with 1024 threads per bloc.  

V. CONCLUSION AND PROSPECTIVE 

The GPU architecture is well adapted to intensive 
computing. We parallelized the Durand-Kerner algorithm for 
polynomial roots-finding and we obtained encouraging results. 
Indeed, the experimental study confirms that our program 
determines the same roots than the sequential version for high 
degrees. The contribution of the parallel solution allows us to 
accelerate the execution time and to study even more 
important degrees of polynomial. The parallelization of this 
type of application is thus completely justified and confirmed 
by a speed up of 10. 

As perspective, it is interesting to compute and find more 
roots so we think to develop this solution on several GPUs 
with a cluster of GPUs. Finally, we plan to study other 
algorithms of roots finding polynomials and their implantation 
on GPUs.  
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