A parallel implementation of the Durand-Kerner
algorithm for polynomial root-finding on GPU

Kahina Ghidouche Raphaél Couturiéand Abderranmane Sider

YL IMED Laboratory, University A-Mira of Bejaia,
Targa Ouzemour streets, Bejaia, Algerie
Kahina.ghidouche @gmail.cqrar.sider@univ-bejaia.dz

Abstract— In this article we present a parallel
implementation of the Durand-Kerner algorithm to find roots of
polynomials of high degree on a GPU architecture (faphics
Processing Unit). We have implemented both a CPU rgon in C
and a GPU compatible version with CUDA. The main reaglt of
our work is a parallel implementation that is 10 tmes as fast as
its sequential counterpart on a single CPU for highdegree
polynomials that is greater than about 48,000.

Keywords— polynomial root-finding, high degree, itenee
methods, Durant-Kerner method, GPU, CUDA, Parallelizm.

l. INTRODUCTION

The root finding problem consists in retrievind alues
of a real or complex variable verifying p(x) = 0. p is a
real/complex function irR" or C". In this article we suppose
that p is a polynomial of degrem, that is to sayp is of the
form p = ax 40,...,n-1whereg is a real/complex
constant called the™ coefficient anda, 1.0. It is well known
that the number of roots of a polynomial of degnds exactly
n.

The issue of finding the roots of polynomials @ry high
degrees arises in many complex problems in varfaids,
such as algebra, biology, finance, physics or dihogy [1].

In algebra for example, finding eigenvalues or eigetors of
any real/complex matrix amounts to finding the soof the
so-called characteristic polynomial.

Different methods of resolution exist for polynomimot-
finding and they usually are classified in direadaterative
methods. Direct methods for finding root of polyrial®s only
exist forn=1 andn=2. But for larger degrees, approximation
methods are the only way to solve them. An appraion or
iterative method usually starts with an initial wmn (the
initial guess) that is successively evolved uri# froots are
approximated with a certain precision. Traditiopalthe
Newton method serves to iteratively solve fixed npoi
problems of the form = f(x). For the FRP case, The Newton-
Raphson method is used by simply transforming tiedlpm
of solvingp(x)=0 into one of formx=f(x).

However, the extraction of roots of polynomial ivery
expensive process in execution time. For exampie[6]
authors reported execution times of 3,300s forlgrnmanial of
degree 40,000.

FEMTO-ST Institute, University of Franche Comte;TIU
Belfort-Montbéliard, 19 Av. du Maréchal Juin, BP752
90016 Belfort CEDEX, France

raphael.couturier@univ-fcomte.fr

Graphics Processing Units (GPU), equipping personal
computers, once used primarily for image processing
operations have, nevertheless, seen a tremendougiern of
their computation power that resulted in scientistsd
engineers turning to them to benefit from their dug
capabilities in always higher performance demanding
applications. This led to a new programming contadted
General Processing GPU Computing (GP-GPU).
Consequently, very important savings of time witlanym
scientific applications have been successfully iobth[3,4].

The main objective of this work is to parallelizewell
known algorithm for the computation of polynomiatras
named the Durand-Kerner method, and to experinigntal
study its performance on a GPU architecture usiagous
high degree polynomials.

The following of this paper is organized as follows
Section Il, we recall the mathematical descriptioh the
Durand-Kerner method. Then we present GPUs and thei
programming in section Ill. Afterwards, we detaihet
parallelization of the algorithm and its implemediaa in the
IVth section. Finally we analyze experimental résul
allowing us to conclude our work.

. THE DURAND-KERNER METHOD

An iterative method proceeds by successively negini
initial solution x° until it converges. The solution of an
iterative method, usually noted* verifies x* = f(x*).
Generally, an iterative algorithm has the followfogm:

Xt= f(x) fork=12,- 1)

where X* is the solution at iteratiok, X**! the solution at
iteration k+1 and f is the iterative function. The Durand-
Kerner method consists of four principal phase8][that are :
initialization of the polynomial, initialization othe solution,
applying the iterative functioH; and a termination condition.

A. Phase 1 : initialization of the polynomial P(2Z)
The initialization of the polynomial with complex
coefficientsP(z)is carried out as follows:

Oa OC,P(2)= Zn: a.z"" with (a, = 1,a, #0) 2

i=0

B. Phase 2 : initialization of the vectof’Z type, we evaluate the logarithm of the polynomighis

The second phase of the method consists in iritigithe solution is interesting to find the roots of higregdee
vector 2. This initialization is important because the POlynomials.
components of the vector must be different fromheather. . PARALLELISATION oF THE
To achieve this, the Gugenheimer method is usélisnvork. ALG'ORITHM
A radius ¢ is determined from the polynomial coefficients
such that initial roots are placed at equidistamee circle of Before dwelling on the parallelization, we presene
radius c. The computation ofc is carried according to GPU architecture and the CUDA (Compute Unified [Revi
Equation (3) where andv are in turn computed as shown in Architecture) platform which are the tools we hawed to
Equation (4) where each; @nd each vis the result of parallelize the Durand-Kerner algorithm.

Equation (5). A. The GPU architecture

DURAND-KERNER

g=—— 3) The graphics processor of GPUs was initially deVite
. 2 e process graphic applications and 3D displays; ihaay, to
2 Y Zvi ensure visualization functions. For example, présiudke
u=—= V= (4) GeForce and Quadro, two ranges of GPUs proposed by
n.mri\xui n.max v nVIDIA, are respectively intended for the graphgsneral
1= i=0

public and professional visualization.

1
ni ®) A GPU is a graphic processor connected with a ticawil
processor (CPU) via a PCI-Express interface (sg€elLBi It is
often considered as an accelerator of intensivéhrastic
operations of an application executed on a CPUdellives its
computing power from its massively parallel arctiitee.
Indeed, unlike CPU architecture, a GPU is composéd
hundreds or even thousands of streaming proce€SBjs also
called cores, and organized in several blocks otgssors
called multi-processors (SM or SMX). Fig2 shows a
9 = jz—n. (7) comparison between the architecture of a CPU aatidha
! n Fermi GPU [7].

wa W

1 1
u =2lali v, =§.%

Then the initial guesses for theoots are evenly placed
around the circle of radius

z” = (cos@, +isind,).c j=0..
Where

,n-1, (6)

C. Phase 3 : Applying the Hi iterative function

The third phase of the method is to apply the ftega
function Hi which will make it possible to converge to roots
solution of the polynomial, provided that all theots are
different.

P(Z|) Graphics board GPU A GPU connected with a CPU
i D[l n] Hi(2)=12 - = (8) Fig .1. Example of CPU equipped with GPU.
I_' (Zi - Zj) -
- (coec J (oo J| [(e] [e]
D. Phase 4 : A termination condition [Core] [Core] [o] [M e
At the end of each application &f, a stop condition is [Murocesso [Mlrocesor]
verified. We have two possibilities to implement it [Core ¢] [Core :] . .
» The first solution consists in stopping the iterati — . (— * -
ultiprocessor ultiprocessor
process when the whole of the modules of the roots [Core ¢] [Core] [cores] [32 cores]
are lower than a fixed valu®, that is :
RAM | RAM |

0i0[Ln]; |P@) < €. ©)

* In the second solution, we stop the iterative fiomct
when the roots are stable, i.e. the method conserge Fig. 2. Comparison of the number of cores in a @R a GPU

A CPU with 8 Core A Fermi GPU with 512 Cores

sufficiently: The massively parallel architecture of GPUs offers
_ Zi(k) _ Zi(k—l) performances and very interesting _comput_ing c_:ahmcito
g [1, n] 41— <& (10) solve new complex problems of ever increasing siresrder

Zi(k) to use thesg GPUs, sevgaral platforms have beeropedto
It should be noticed that our algorithm follows the facilitate their programming and usage. CUDA fromilbIA
principle of improvement of the method of Durandrier @nd OpenCL from the consortium Khronos group are\tery

described in [5,6]. Thus, when the evaluation gbéynomial popular development tools that make it easier titevparallel
leads to numbers exceeding the storage capacttyeadouble ~Proegrams on those target GPUs. In this work, weQs®A,

which is the reason for which the next subsectemalls some
of its basic properties.

B. CUDA architecture

program/algorithm. In our case, all the operatithrag are easy
to execute in parallel must be made by the GPlttelarate
the execution of the application. On the other haailthe
sequential operations and the operations that hdam

CUDA has been developed by NVIDIA and it enablesdependencies between threads or recursive commsatiust

developers to increase the performances of thaimpcing
programs by exploiting the huge computing power thod
graphic processors.

It is based on the C/C++ programming language sdthe
extensions that admit the expression of dense amnaplex
data in a context of parallelism. An applicationitten in

be executed by only one CUDA or CPU thread. In garedl
the data must stay on the GPU because memory éransife
expensive.

In our case we parallelized phase 3 and phase theof
Durand-Kerner method. For phase 3 we have two kerttee
first namedsaveis used to save vecta! and the kernel

CUDA is a heterogeneous program that executes on @gpdateis used to update th& vector. In phase 4 a kernel is
processor (CPU) equipped with a graphics board (GPUcreated to test the convergence of the method.rdieroto

Indeed, in a CUDA program, the codes to be execlethe
CPU are separately defined from those to be exddwethe
GPU. All the intensive arithmetic operations areaxed by

the GPU as a kernel formA kernel is a procedure written in
, which msea

CUDA and defined by a heading __ global
that it is to be executed by the GPU. In addititre CPU
executes all the sequential operations that calpeaxecuted
in parallel and controls the execution of the késnen the

compute function H, we have two possibilities: eitlto use
the Jacobi method, or the Gauss-Seidel method wiseh the
most recent computed roots. It is well known theg Gauss-
Seidel mode converges more quickly. So, for botisivas of
the algorithm we used the Gauss-Seidel mode ddtiter. To
parallelize the code, we created kernels and mangtibns to
be executed on the GPU for all the operations dgaliith the
computation on complex numbers and the evaluatiothe

GPU as well as data communication between the Cpﬁolynomials_ As said previously, we managed boticfions

memory and the GPU memory.

CUDA is based on the model of parallel programmlng[

single instruction multiple threads SIMT (Singlestiruction,
Multiple Thread) model. So, each kernel is execuied
parallel by thousands, even millions, of threadsth& level of
a GPU, the threads of the same kernel are orgahiizgrids
of several blocks of threads which are distributemte or less
equitably, on the whole of the multiprocessorshef GPU (see
Fig .3) [3].

GPU with 3 multiprocessor

SM1

SMO i . SM2

CBrlIIe of threads blohks

Block (0,0) || Block (1,0) | Block (2,0) , X

| | Block (2,1) |

Block (0,1) | | Block (1,1)

__

Multlprocessor With 8 CUTES

SP O SP1 SP 2 SP 3 SP 4 SP5 SP 6 SP7

Thread Thiead Thread Thread Thread Thread Thread Thread
0.0 10 0 (3.0) (4,0) 5,0 (6,0) (7,0

Thread Thread Thread Thread Thread Thread Thread Thread
(0,1) (1,1) (21) (3.1) 4.1) 61 6.1) 7.1

Thread Thread Thread Thread Thread Thread Thread Thread
0.2) 12) 2,2) 32) 42) (5.2) (6,2) 7.2)

Thread Thread Thread Thread Thread Thread Thread Thread
0.3) (13) (23) (33) (43) (5.3) 63) 73

A

Fig. 3. Example block execution threads on a timsetisional on GPU with
3 multiprocessors (8 cores)

C. Parallel version of the Durand-Kerner algorithm

Like any parallel code, a GPU parallel implementafirst
requires to determine the sequential tasks and
parallelizable parts of the sequential

of evaluation of a polynomial: the normal methodséd on
he method of Horner and the method based on theritbm

of the polynomial. All these methods were rathengloto

implement, as the development of correspondingetsrwith

CUDA is longer than on a CPU host. This comes iniqaar

from the fact that it is very difficult to debug ©A running

threads like threads on a CPU host. In the follgwsaragraph
Algorithm 1 shows a sequential CPU implementatidmereas
Algorithm 2 shows the GPU parallel version.

1 Compute initial values {z
2Letk=1,;
3do

3 Iet

4 for j =

5 Z 1 = zk-
6 z =H,(z

3Z n1}

=0;

max

7 setAz,., =

8 k=k+1;

9 while z > g,

max

version dfe t

Algorithm 1. A Durand-Kerner algorithm sequentiaplementation on CPU

the

with various sizes of polynomials. Finally we ewtked the
1 Compute initial values {z influence of the size of the threads blocks.
2do

3 let Az, =0;

4copy Z, Az into the device memory

01 Z n1}

1) A comparative study between Gauss seidel iteragiuh
Jacobi iteration

d_Z,_d_A_zm_ o 4500 ~
5 <D!mGr!d,D!mBIoc> kernel_save(d z ?(__ 4000 1 — Gauss seidel
6 <DimGrid,DimBloc> kernel_update(d_z%); @ 3500 iteration on GPU
7 <DimGrid,DimBloc> kernel_ testConverge £ 3000 \/
(d_AZ yax, d_Zk, d_Zk_ l); = 2500 ==@== Jacobi iteration
8 k=k+1; £ 2000 on GPU
9 while AzZpaes; 8 1500
10 copy the result into the host memory & 1000 — Gauss seidel
500 o~ iteration on CPU
Algorithm 2. A Durand-Kerner algorithm parallel itementation on GPU 0 M_ _v_m" ’
. 0 2000 4000 6089==Jacobi iteration
For the GPU version, kernels serve to make th . on CPU
polynomial degree

computations of lines 5, 6 and 7 of the CPU alpanit We
can notice that the “for loop” does not exist anyenn the
parallel version because kernels are executed bythal
threads. In each kernel call in the code, we raball there are

indeed DimGrid blocks of threads consisting of Do Figure 4 shows a comparison between the Gauss ISeide
threads by block. Thus, we use as many threadseasumber jterations and the Jacobi iterations for both tlaeapel and
of roots of the studied polynomial. It results tleaich thread sequential versions of the algorithms. We cleagly that the
computes one root at time. To achieve this, we ada® Gauss Seidel method converges faster than theiJéamaition

Fig . 4 A comparative study of both the Gauss $eide the Jacobi iteration
for the Durand-Kerner algorithm on GPU and CPU

values of DimGrid and DimBloc according to the $tad
polynomial, and before launching the kernel.
In what follows, we report the CPU and GPU resoftan

which has a very slow convergence rate.

2) The Durand-Kerner algorithm with the high degree

experimental study carried on different high deQreeponnomiaIs.

polynomials.

IV. EXPERIMENTS

A. Definition of the polynomial used

We use a polynomial of the following form for whitihe
roots are distributed on 2 distinct circles:

Oy, 0, 0COm,m,0 N'; P(2)= (2",)(Z"a,) (11)

This form allows to associate roots having two etiét
modules and thus to work on a polynomial constitugéfour
nonzero terms.

B. Study condition

In order to have representative average valuesgéch
point of our curves we measured the roots findifigl®
different polynomials.

In our experiments two parameters are studiedptiynomial
degree and the execution time of our program tovexe on
the solution. The polynomial degree allows us ttdate that
our algorithm is powerful with high degree polynaisi The

execution time remains of course the element-keychvh

justifies our work of parallelization.

In this experimentation we compare the sequential a
parallel versions of the Durand-Kerner algorithnthwhigh
degree polynomials, i.e. more than 20,000. Figusbdws the
execution times for polynomials of various degrees.

5000

4500 rner g
2 4000 SR
g 3500 /
= 3000
c
£ 2500 //
8 2000 -/
3 1500
£ 1000 /

500

0 W
0 10000 20000 30000 40000 50000 60000C
polynomial degree

Fig. 5. Comparison of the execution times of thedbd-Kerner algorithm on
CPU and GPU

This curve shows a comparison of execution times

between the parallel and sequential version of Dioeand-

For our tests we used a CPU Intel(R) Xeon(R) CPWerner algorithm with polynomial degrees rangingnir 500

E5620@2.40GHz and a GPU Tesla C2070 (with 6 Garof r

C. Comparative study

We initially carried out a comparative study betwehe
Gauss-Seidel iterations and the Jacobi iteratiars both
sequential and parallel versions. Then we carriedaotest

to 50,000. During our test we noticed that the felraersion
executes a polynomial of size 48,000 in 373.944ereéds the
sequential version requires 4,510.22s. So, thelphvarsion
is executed approximately 10 times faster thanstwuential
version. Furthermore, we verified that the numtfdatesations
is the same. This reduction of time allows us tmpote roots

of polynomial of more important degrees at the sdime

than with a CPU.

(3

3) Influence of the number of threads per blockiy

It is also interesting to see the influence of tlvenber of
threads per block on the execution time. For tivatchose 10

different polynomials of degree 35,000.

=== E xecution time

& NG

0 500 1000
number of threads per block

1500

Fig .6. Influence of the number of threads per bloe the execution time.

(5]

(6l

(7]

The curve shows the impact of a different number of

threads per block over the execution time. The ramf

threads per block varies from 8 to 1,024. It cambiced that
the larger this one is, the more the execution tileereases.

On the graph we can remark that the best exectitiom is
around 150s with 1024 threads per bloc.
V. CONCLUSION AND PROSPECTIVE

The GPU architecture
computing. We parallelized the Durand-Kerner aldponi for

polynomial roots-finding and we obtained encourggiesults.

Indeed, the experimental study confirms that ourgpm
determines the same roots than the sequentiabwefsi high

degrees. The contribution of the parallel solutidiows us to

is well adapted to intensive

accelerate the execution time and to study evenemor

important degrees of polynomial. The parallelizatiof this

type of application is thus completely justifieddaconfirmed

by a speed up of 10.

As perspective, it is interesting to compute amd fimore
roots so we think to develop this solution on sav&PUs

with a cluster of GPUs. Finally, we plan to studthey

algorithms of roots finding polynomials and themrglantation

on GPUs.

VI. REFERNECES

[1] Bini Dario Andrea. Numerical computation of polyniam zeros by

means of Aberth’s method. Numerical Algorithms 1896), 179-200.

[2] Sagraloff Michael., and Chee. K Yap. A simple buaict and efficient
algorithm for complex root isolation. In Proceedingf ISSAC’'2011

(2011), pp. 353-360.

Raphaél Couturier, Designing Scientific Applicato on GPUs,
Numerical Analysis and Scientific Computing, 201Ghapman and
Hall/CRC

Lilia Ziane Khodja, Ming Chau, Raphaél Couturieacques Bahi, Pierre

Spitéri, Parallel solution of American option detives on GPU
clusters, Computers and Mathematics with Appliceti65(11): 1830-
1848 (2013)

Karim Rhofir, Frangois Spies, and Jean-Claude Miell
Perfectionnements de la méthode asynchrone de @4@mer pour les
polyndmes complexes. Calculateurs Paralléles, ¥B{@)-458, 1998.

Raphaél Couturier, Frangois Spies. Extraction deines dans des
polyndmes creux de degré élevé. RSRCP (Réseauxysenges
Répartis, Calculateurs Paralléles), Numéro thématig Algorithmes
itératifs paralléles et distribués, 13(1):67--8002.

NVIDIA Corporation. NVIDIA CUDA C Programming
Guide.Version4.2,2012.http://developer.downloadiiazcom/compute/
DevZone/docs/html/C/doc/CUDA C Programming Guidé.p

