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Optimization of Viscoelastic Systems 
Combining Robust Condensation and 
Metamodeling 
The effective design of viscoelastic dampers as applied to real-world complex engineering 
structures can be conveniently carried out by using modern multiobjective numerical 
optimization techniques. The large number of evaluations of the cost functions normally 
combined with the typically high dimensions of finite element models of industrial 
structures makes multiobjective optimization very costly, sometimes unfeasible. Those 
difficulties motivate the study reported in this paper, in which a strategy is proposed 
consisting in the use of evolutionary algorithms specially adapted to multiobjective 
optimization of viscoelastic systems, combined with robust condensation and 
metamodeling. After the discussion of various theoretical aspects, a numerical application 
is presented to illustrate the use and demonstrate the effectiveness of the methodology 
proposed for the optimal design of viscoelastic constrained layers. 
Keywords: multiobjective optimization, robust condensation, viscoelastic damping, 
artificial neural networks, finite elements 
 
 

Introduction1

Passive control is recognized as being advantageous in terms of 
stability, effectiveness in broader bandwidths and ease of 
implementation (Nashif et al., 1985). In particular, the use of 
viscoelastic materials has been regarded as a convenient strategy in 
many types of industrial applications, where they can be applied 
either as discrete devices or surface treatments at a relatively low 
cost (Samali and Kwok, 1995; Rao, 2001; de Lima et al., 2009; 
Espíndola et al., 2005). However, viscoelastic materials present 
some inherent drawbacks such as the influence of operational and 
environmental factors (frequency, temperature, pre-loads, moisture, 
etc.). Also, viscoelastic damping systems (specially, surface 
treatments) are prone to induce considerable mass additions. This 
last feature leads to the necessity of performing optimization aiming 
at achieving the desired performance and, at the same time, 
complying with design and construction constraints. 

In the last decades, much effort has been devoted to the 
development of finite element (FE) models capable of accounting 
for the typical dependence of the viscoelastic behavior with respect 
to frequency and temperature (Bagley and Torvik, 1983; MacTavish 
and Hughes, 1993; Lesieutre and Lee, 1996; Galucio et al., 2004). 
As a result, it is currently possible to model complex real-world 
engineering structures such as automobiles, airplanes, 
communication satellites, buildings and space structures (Balmès 
and Germès, 2002). A natural extension of this modeling capability 
is the optimization of the viscoelastic devices aiming the reduction 
of cost and/or the maximization of performance (Hao et al., 2004; 
Lee et al., 2004). In the quest for optimization, engineers are 
frequently faced with conflicting objectives. Such situations are 
conveniently dealt with by the so-called multiobjective or 
multicriteria optimization approach (Eschenauer et al., 1990). 
However, multiobjective optimization generally requires a large 
number of evaluations of the cost functions involved. For large 
finite element models of viscoelastic systems, typically composed of 
many thousands of degrees-of-freedom (DOFs), if such evaluations 
are made based on exact response computations performed on the 
full FE matrices, computation times can become prohibitive.  

The work reported herein intends to propose a general strategy 
for the reduction of the computational burden involved in the 
optimization of viscoelastic structures by combining Multiobjective 
Evolutionary Algorithms (MOEAs), robust condensation and 
Artificial Neural Networks (ANNs). The motivation for the use of 
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robust condensation is that the computation of complex harmonic 
responses based on the complete FE model by direct inversion of the 
dynamic stiffness matrix is generally unfeasible. Hence, it is 
suggested to use an adapted version of the approach proposed by 
Balmès and Germès (2002) and Masson et al. (2003), which is based 
on the use of an enriched modal basis for approximate model 
reduction. A so-named robust basis is constructed to take into 
account the structural modifications introduced by the inclusion of 
the viscoelastic treatments into the original system in such a way 
that updating of the reduction basis by exact re-analysis is avoided, 
leading to a drastic reduction of the time required to evaluate the 
cost functions from the frequency responses functions (FRFs). 

Metamodels have also been largely used in various types of 
model-based computations as a means of reducing the 
computational effort when complex, high-fidelity numerical models 
are involved. The underlying idea is to replace the original physical 
model by a reduced model which is capable of representing 
adequately the input-output relations. The response surface 
methodology (RSM), frequently combined with Design of 
Experiments (DOEs) and ANNs, has been used to construct 
metamodels in various types of application (Soteris, 2004). The 
metamodel used in this study is an ANN of the type Multilayer 
Perceptron (MLP), which will be coupled with optimization 
algorithms, with the aim of further reducing the time required for 
the evaluation of the cost functions. 

In the remainder, various theoretical aspects are first presented 
including the introduction of the viscoelastic effect into the 
structural matrices and a review of the FE modeling procedure of a 
three-layer sandwich plate, with a special parameterization scheme 
of the structural matrices with respect to the design variables and 
various aspects related to the optimization strategy. Then, a 
numerical application is presented aiming at demonstrating the 
effectiveness of the methodology when applied to the optimal 
design of surface viscoelastic treatments. 

Nomenclature 

( )T,G ω  = complex modulus function 

0G  = real part of the low-frequency asymptotic complex 
modulus function 

T  = temperature of the viscoelastic material 
0T  = reference temperature value 

M  = mass matrix 
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eK  = stiffness matrix associated with the purely elastic 
substructure 

vK  = frequency- and temperature-independent stiffness 
matrix associated with the viscoelastic substructure 

0K  = low-frequency asymptotic stiffness matrix 

( T,ωQ )

)

 = vector of the generalized displacements 
( )ωF  = vector of the external forces 
( T,ωH  = frequency response function matrix 
( )eU , ( )eT  = strain and kinetic energies 

kD  = matrix formed by differential operators appearing 
in the strain-displacement relations 

( )y,xN  = matrix containing the shape functions 

kC  = matrix of the isotropic material properties 

( T,ω2C )  = matrix of the viscoelastic material properties 
u ,  = displacements in the middle plane of the base-

plate and constraining layer in directions x and y, 
respectively 

v

w  = transverse displacements 

ia ,  = expressed in terms of the nodal displacements and 
rotations by enforcing the boundary conditions at 
elementary level 

ib

kh  = thickness of the k-th layer 
N  = number of degrees-of-freedom (DOFs) 
R  = residues formed by the static displacements 
b  = Boolean matrix 

0
vR  = residues associated to the viscoelastic forces 

b  = Boolean matrix 

0T , T  = nominal and robust reduction basis, respectively 

Greek Symbols 

kρ  = mass density 

ω ,  = excitation and reduced frequencies, respectively rω

xθ ,  = cross-section rotations about x and y, respectively yθ

Tα  = shift factor 
( )kε , ( )2ε  = strains for elastic layers (k = 1,3) and for the 

viscoelastic core, respectively 

 

 

Introduction of the Viscoelastic Behavior into FE Models 

In this paper, as the interest is confined to frequency-domain 
analyses, the so-named Complex Modulus approach is used in 
combination with the Frequency-Temperature Superposition 
Principle (FTSP) and the Elastic-Viscoelastic Correspondence 
Principle (EVCP) (Nashif et al., 1985). The FTSP, also known as 
Williams, Landell and Ferry (WLF) principle establishes the 
equivalence between the effects of the excitation frequency and of 
the temperature on the properties of a broad class of viscoelastic 
materials. This implies that the viscoelastic characteristics, such as 
the material modulus ( )T,G ω  and loss factor ( )T,G ωη  at different 
temperatures can be related to each other by changes (or shifts) in 
the actual values of the excitation frequency. This leads to the 
concepts of shift factor and reduced frequency, symbolically 
expressed, respectively, by ( ) ( ) ( )00 T,GT,GT,G Tr ωαωω ==  and 

( ) ( ) ( )00 T,T,T, TGrGG ωαηωηωη == , where T  indicates an 

arbitrary value of the temperature,  is a reference value of 

temperature, 
0T

( )ωαω TTr =  is the reduced frequency, ω  is the 

actual excitation frequency, and  is the shift function. The 

function 

( )TTα
( )TTα  can be obtained from experimental tests for 

specific viscoelastic materials (Nashif et al., 1985). In this context, 
Drake and Soovere (1984) suggest analytical expressions for the 
complex modulus and shift factor for various commercial 
viscoelastic materials. Equations (1) represent the complex modulus 
and the shift factor functions defined in the following temperature 
and frequency intervals KT 360210 ≤≤ , , 

respectively, where , for the 3M™ ISD112 viscoelastic 
material, as given by those authors. The 3M™ ISD112 is a rubber-
like polymer which is provided by the manufacturer in the form of 
adhesive tapes. The parameters appearing in the following 
expressions are presented in Table 1. 

Hz.. 6100101 ×≤≤ω
KT 2900 =

 

( ) ( ) ( )( )46
33521

B
r

B
rr BiωBiωB1BBωG −− +++=  (1.a)  

 

( ) ( )0
000

10
00

TTS
T
a

T
b

T
Tlogb

T
a22.303

T
1

T
1aαlog AZ2T −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

 (1.b) 
 

From the reduced temperature nomogram generated by the 
computation of expressions (1), the designer can obtain the complex 
modulus and the loss factor at any given temperature into a 
frequency band of interest, as illustrated in Fig. 1 for the particular 
material considered above. 
 

 
Table 1. Parameters of the 3M™ ISD112 provided by Drake and Soovere (1984). 

Complex Modulus – Eq. (1.a) 
[MPa]1B  [MPa]2B  3B  4B  5B  6B  

0.4307  1200  1543000  0.6847  3.241  0.18  
Shift factor – Eq. (1.b) 

[K]0T  [K]LT  [K]HT  -1[K]AZS  -1[K]ALS  -1[K]AHS  
290  210  360  059560.  14740.  0097250.  

( ) ECBCB DDCCDa −= , ( ) EACAC DDCCDb −= , ( )2011 TTC LA −= , ( )011 TTC LB −= ,  ( )AZALC SSC −=

( )2011 TTD HA −= , ( )011 TTD HB −= , ( )AZAHC SSD −= , ( )BAABE CDCDD −=  
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Figure 1. (a) Storage modulus; (b) loss factor for different temperatures 
for the 3M™ ISD112. 

 
According to the EVCP the derivation of the FE model 

accounting for the viscoelastic behavior can be carried-out in two 
distinct phases: first, the element and global stiffness matrices are 
obtained by considering pure elastic behavior (i.e., frequency- and 
temperature-independent material moduli), accounting for the strain 
state assumed by the underlying theory; then, the material moduli 
are modified to account for the viscoelastic behavior according to 
the complex modulus approach. Clearly, this approach leads to 
frequency- and temperature-dependent FE stiffness matrices. 
Assuming isotropic behavior and frequency- and temperature-
independent Poisson ratio, the global equations of motion in the 
frequency domain of a viscoelastic damped system 
containing DOFs, for which one of the moduli appears factored-
out of the viscoelastic stiffness matrix, can be expressed as follows 
(de Lima et al., 2009): 

N

 

( )[ ] ( ) ( )ωωωω FQMKK =−+ T,T,G ve
2  (2)  

 
where NNR ×∈M  is the mass matrix, is the stiffness 

matrix corresponding to the purely elastic parts, and 

NN
e R ×∈K

NN
v R ×∈K is 

the frequency- and temperature-independent part of the viscoelastic 
stiffness matrix.  and are, respectively, 
the vectors of the amplitudes of the harmonic generalized 
displacements and external loads. The receptance or frequency 
response function matrix is expressed as: 

( ) NRT, ∈ωQ ( ) NR∈ωF

 

( ) ( )[ ] 12 −
−+= MKKH ωωω ve T,GT,  (3)  

(a)  
The computation of the FRF by direct inversion of the dynamic 

stiffness matrix, as indicated in Eq. (3), is unfeasible in practical 
situations in which FE models with large numbers of DOFs are dealt 
with. Thus, alternative procedures based on model reduction are 
proposed in the paper to alleviate the computational cost. 

FE Formulation of a Three-layer Sandwich Plate 

In this section, the model of a thin or moderately thin three-layer 
sandwich plate FE, which can be frequently found, for example, in 
aerospace systems, is summarized, based on the original 
developments made by Khatua and Cheung (1973). Figure 2 depicts 
a rectangular element formed by an elastic base-plate (1), a 
viscoelastic core (2) and an elastic constraining layer (3). This 
element contains four nodes and seven DOFs per node, representing 
the in-plane displacements in the middle plane of the base-plate in 
directions x  and  (denoted by and ,y 1u 1v  respectively), the in-
plane displacements of the middle plane of the constraining layer in 
directions x  and (denoted by  and ,y 3u 3v  respectively), the 
transverse displacements, , and the cross-section rotations aboutw x  
and , denoted by and , respectively. y xθ yθ

(b)

 

  (3) constraining layer

 (1) base plate

(2) viscoelastic core

1 2

34

x

y

z

a

b
w

u1v1

v3

u3 θx

θy

h1

h2

h3

 

(b) 

Figure 2. Three-layer sandwich plate finite element. 

 
In the development of the theory, the following assumptions are 

adopted: (i) all the materials involved are homogeneous and 
isotropic and present linear mechanical behavior; (ii) normal 
stresses and strains in direction z are neglected for all the three 
layers; (iii) the elastic layers (1) and (3) are modeled according to 
Kirchhoff’s theory; (iv) for the viscoelastic core, Mindlin’s theory is 
adopted (transverse shear is included); (v) the cross-section rotations 

 and  are assumed to be the same for the elastic layers; (vi) the 
transverse displacement  is the same for all the three layers. 
These assumptions have been considered by many authors as being 
adequate for the modeling of thin panels, as it is the case of the 
structures addressed in the present paper, where it is assumed the 
facesheets to be thin (Austin, 1999). Moreover, previous studies 
carried-out by the authors have demonstrated good correlation 
between model predictions and their experimental counterparts 
(Lima et al., 2003).  

xθ yθ
w

The strain-displacement relations are used and the resulting 
strains for elastic layers ( )31,k =  and for the viscoelastic core are 
separated, respectively, by uncoupling membrane, bending and 
shear effects, as follows: 
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and . In equations (4),   designate the 
transverse coordinates measured from the lower surface of each 
layer, and subscripts m, b and s designate membrane, bending and 
shear effects, respectively. The discretization of the displacement 
fields within the element is made by using the following linear and 
cubic interpolation functions: 

311 hhd +=

312 hhd −= kz ( 31,k = )
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    (5) 

 
where the coefficients  and  are to be expressed in terms of the 
nodal displacements and rotations by enforcing the boundary 
conditions at elementary level.  

ia ib

Based on the kinematic hypotheses and stress-states assumed for 
each layer, the stress-strain relations are applied, and the strain and 
kinetic energies of the plate are formulated as: 
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is the elementary mass matrix. As for the stiffness matrix, 

( ) ( ) ( )eee
e 31 ΚΚΚ +=  and ( ) ( )( T,ee

v ω2ΚΚ = )

)

 are, respectively, the 
contributions of the purely elastic and viscoelastic parts of the 
structure, defined, respectively, as: 
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where  and  are the thickness and the mass density of the k -

th layer, respectively. Matrices  are formed by 
differential operators appearing in the strain-displacement relations, 
and 

kh kρ
( )z,y,xkD ( 321 ,,k =

( )y,xN  is the matrix containing the shape functions. 

kC ( )31,k =  and ( )T,ω2C  are, respectively, the matrices of 

isotropic elastic and viscoelastic material properties. ( )( )T,e ω2Κ  is 
the frequency- and temperature-dependent stiffness matrix of the 
viscoelastic layer. From the elementary matrices computed for each 
element of the FE mesh, the global equations of motion are 
constructed, accounting for node connectivity, using standard finite 
element assembling procedure. 

Parameterization of the FE Model 

At this point, it is important to consider that, in the context of 
the present study, the FE model generated according to the 
formulation above is to be used in combination with optimization 
procedures, in which objective functions computed from the 
dynamic responses must be minimized with respect to a set of 
physical and/or geometrical design parameters which intervene in a 
rather complicated nonlinear fashion in those responses. In an 
attempt to reduce the computation cost involved in the optimization, 
it becomes interesting to perform a parameterization of the finite 
element model, which is understood as a means of making those 
parameters to appear explicitly in the mass and stiffness matrices. 
This procedure enables to account for modifications and/or 
uncertainties in the values of the design variables in a 
straightforward way during iterative optimization and/or model 
updating. Also, it facilitates the evaluation of the sensitivities of the 
responses with respect to the design parameters (de Lima et al., 
2010a). 

According to the theory of the sandwich plate finite element 
summarized in Section 3, the design parameters of mass and 
stiffness of each layer can be factored-out of the elementary 
matrices by uncoupling membrane, bending and shear effects, 
respectively, as follows: 
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where  and ( ) designate the 
longitudinal moduli of the elastic layer. Using the notation 
previously defined, subscripts m, b and s, respectively, indicate the 
membrane, bending and shear effects in the structural matrices. It 
should be noted that, in Eqs. (8), the matrices appearing in the right-
hand side are constant sparse matrices which are independent from 
the design parameters. It is clearly perceived how the use of such 
expressions facilitates the computations related to reanalysis and 
sensitivity of the response with respect to those parameters. 

3213 2 hhhd ++= kE 31,k =

Robust Condensation of Viscoelastic Systems 

In the case of complex structures of industrial interest, FE 
models are usually constituted by a large number of DOFs 
(hundreds of thousand or even millions). In such cases, it becomes 
practically impossible to compute the FRFs directly from Eq. (3), 
owing to the prohibitive computation times and storage memory 
required. This fact motivates the use of model reduction techniques, 
which aims at reducing the model dimensions and the associated 
computational burden, while keeping a reasonable predictive 
capacity of the numerical model. This can be done based on the 
assumption that the exact responses, given by the resolution of Eq. 
(2) can be approached by projections on a reduced vector basis of 
the following form (de Lima et al., 2010b): 
 

( ) ( T,ˆT, ωω QTQ = )  (9)  
 
where  is the transformation matrix formed by column-

wise by base vectors,  are generalized coordinates, 
and  is the number of vectors in the basis. By considering 
Eqs. (2) and (9), the receptance matrix (3) can be rewritten as 
follows: 

NRNC ×∈T
( ) NRCT,ˆ ∈ωQ

NNR <<

 

( ) ( )[ 12 −
−+= MTTTKTTKTH T

v
T

e
T T,GT,ˆ ωωω ]  (10)  

 
The reduced dynamic stiffness matrix can be computed 

frequency by frequency and inverted in a direct way using efficient 
numerical algorithms. However, for viscoelastic systems, the 
selection of the basis of reduction is an important aspect. Owing to 
the dependence of the stiffness matrix with respect to frequency and 
temperature, the reduction basis should be able to represent the 
changes of the dynamic behavior as frequency and temperature vary. 
To comply with this need, various procedures can be adopted 
regarding the computation of the reduction basis: (i) one can simply 
neglect this dependence by considering the stiffness matrix as being 
constant (Balmès and Germès, 2002). In this case, the reduction 
basis is also constant; (ii) one can use a constant reduction basis 
obtained by the resolution of the nonlinear eigenvalue problem 
associated to a frequency- and temperature-dependent stiffness 
matrix (Palmeri and Ricciardelli, 2006; Daya and Potier-Ferry, 
2001; Plouin and Balmès, 1998); (iii) one can use an iterative 
method for the re-actualization of the basis according to frequency 
and temperature (Balmès and Germès, 2002). In this work, the 
strategy proposed consists in using a reduction basis formed by a 

constant modal basis of the associate conservative system. However, 
this basis is enriched by static residual vectors to account for the 
effects of the external loads and viscoelastic damping forces. These 
static responses are computed from the low-frequency asymptotic 
stiffness matrix, representing the static behavior of the viscoelastic 
materials, according to: 
 

ve0 G KKK 0+=  (11)  
 
where  is the real part of the modulus function represented by 
Eq. (1.a). Then, the nominal basis can be obtained by the resolution 
of the following eigenvalue problem: 

0G
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In general, a relatively large number of eigenvectors must be 

kept in the projection basis to guarantee the accuracy of the reduced 
model. It has been shown in previous studies (Balmès and Germès, 
2002; de Lima et al., 2010b) that the number of necessary projection 
vectors can be reduced by introducing the residues formed by the 
static displacements associated to external forces, , where 

is a Boolean matrix which enables to select, among the 
DOFs, those in which the excitation forces are applied, and the 
residues associated to the viscoelastic damping forces, 

bKR 1
0
−=

fNR ×∈b

0
1

0
0 ϕvv KKR −= . These residuals are interpreted as the columns of 

the flexibility matrix of the associated undamped system, associated 
to the coordinates of application of two types of forces: the external 
excitation forces and the damping forces. The latter can be better 
understood by examining Eq. (2), noting that the term involving the 
viscoelastic behavior can be moved to the right-hand side, where it 
plays the role of additional forces impressed to the associated 
conservative structure. Thus, the enriched basis of reduction for the 
viscoelastic system is given as: 
 

[ ]0
00 vRRT ϕ=  (13)  

 
Experience has demonstrated that the nominal reduction basis 

(13) can be used to reduce the viscoelastic damped systems with 
reasonable accuracy. Nevertheless, this reduction basis does not 
represent the modifications of the dynamic behavior provoked by 
the parametric modifications which must be introduced into the 
model during iterative processes of optimization and/or model 
updating. This means that this basis should in principle be updated 
successively to guarantee a satisfactory accuracy of the reduced 
model during the iterative processes, which would require costly 
computations. In order to cope with this difficulty, the strategy 
suggested herein consists in performing a further enrichment of the 
reduction basis (13) by a set of residual vectors associated to the 
modifications of the design parameters, following the procedure 
proposed by Masson et al. (2003) for undamped systems. 

For the modified structural configuration, the dynamic 
equilibrium equation in the frequency domain can be written as 
follows: 
 

( ) ( ) ( ) ( T,T,T, ωωωω ΔFFQZ += )  (14.a)  
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Equation (14.a) can be interpreted as the dynamic equilibrium 
equation of the nominal model, subjected to the forces associated to 
the structural modifications, defined as follows: 
 

( ) ( ) ( T,T,T, ωωΔωΔ QZF −= )  (14.b)  
 
where  is the variation of the 
dynamic stiffness matrix associated to the parametric modifications.  

( ) ( ) vv T,T, ΔΜΔΚΔ 2ωωω −=Z

In general, the perturbed matrices associated with the 
viscoelastic zones are nonlinear functions of the design parameters 

. The viscoelastic stiffness and mass matrices, considering 
modifiable zones of the model can be expressed as follows: 

ip
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In the equations above, the symbol indicates matrix 

assembling; subscript  indicates the modified viscoelastic zones in 
which the parameter  intervenes; 

U
i

ip viK  and  designate the 
stiffness and mass matrices corresponding to those viscoelastic 
zones, respectively. These later are decomposed according to Eq. 
(15.b) by identifying the matrices 

viM

viKδ  and  from which the viMβ

δ - and β-order exponentials in the parameter  can be factored-
out. As can be seen in Eq. (14.b), the vector of forces associated to 
the structural modifications depends on the response of the modified 
system, . Since this response is unknown a priori, those 
forces cannot be computed exactly. The essential concept of the 
robust condensation is expressed in the following steps: first, one 
uses Eq. (14.b) to generate a vector of forces which, even though it 
does not contain the exact forces associated to the modifications, 
will at least represent a subspace containing these vectors. This is 
accomplished by introducing the response of the nominal system 
into expression (14.b); next, the resulting vector of forces is used to 
generate static responses, once again on the basis of the nominal 
model. These two steps are repeated for each design parameter 
subjected to modifications. In practice, many types of responses can 
be introduced into expression (14.b), including the normal modes of 
the structure and the sensitivity vectors. If the vector introduced is 
composed of a truncated basis of normal modes, one can rewrite Eq. 
(14.b) as follows: 

ip

( T,ωQ )

)
 

( ) ( ) ( T,ˆT,T, ωωωΔ QZF 0ϕΔ−≈  (16)  
 

For example, for a parameter  intervening in the viscoelastic 
mass and stiffness matrices, the bases of forces can be expressed 

under the form 

ip

[ ]vi
ii pp

KM FFF ΔΔΔ = , where  and 00Λϕvipi
MF M =Δ

00 ϕvip G
i

KF viK =Δ  are the bases of forces associated to the 

viscoelastic mass and stiffness modifications. After obtaining the 
bases of forces, one can calculate a series of static responses of the 
nominal viscoelastic system based on the tangent stiffness matrix as 
follows , and the final robust condensation basis taking 

into account a priori knowledge of the viscoelastic modifications 
can be expressed as follows: 

ΔΔ FKR 1
0
−=

 
[ ]ΔRTT 0=  (17)  

 

where [ ]
npppp ΔΔΔΔ RRRR K

21
=  and  indicates the number 

of design parameters to be modified.  

np

The residue matrix  is not necessarily of maximum rank. 
Thus, with the aim of obtaining a limited number of independent 
residue vectors, it is appropriate to select the dominating directions 
of this basis, which can be done by performing the Singular Value 
Decomposition (SVD) of  to identify its dominant singular 
values.  

ΔR

ΔR

Figure 3 illustrates a comparison between a cycle of 
optimization or model updating processes by using a standard 
reduction and the proposed robust condensation strategy. The robust 
strategy is used to approximate the behavior of the modified 
viscoelastic structure without the re-actualization of the nominal 
basis of reduction, leading to a drastic reduction of the time required 
for computing the responses. Moreover, this approach can be 
advantageously adapted to several other structural domains based on 
iterative processes: stochastic structural dynamics, nonlinear 
mechanics, and reliability-based optimization. 
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Figure 3. Block-diagram of reanalysis processes associated to robust 
condensation. 

 
In the case of global modifications, for which the whole 

structure fully treated by viscoelastic materials is modified by using 
the same level of perturbation, the standard condensation procedure 
using the reduction basis (13) is robust and do not need to be 
improved. In this case, there is only a frequency shift between the 
nominal model and the perturbed model, so that transformation (13) 
can represent correctly the perturbed viscoelastic model. However, 
when local modifications are introduced, which is the case of 
structures partially treated by constrained viscoelastic layers, 
experience shows that the accuracy of this solution degenerates 
rapidly with the amplitude of the perturbation, which demonstrates 
the interest in using the robust basis (17). 

Multiobjective Optimization 

Many engineering problems involve simultaneous optimization 
of multiple objective functions, which may be in conflict with each 
other. In general, for a multiobjective optimization problem the 
optimal solution is not unique and the interaction among different 
objectives gives rise to a set of optimal solutions, known as the 
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Pareto solutions (Eschenauer et al., 1990). Since none of the Pareto 
solutions can be said to be better than the others without any further 
consideration, the interest becomes to find as many Pareto optimal 
solutions as possible from which one can choose based on 
engineering judgment or other particular criterion. A multiobjective 
problem includes a set of k parameters and a set of n objective 
functions ( ), and can be symbolically stated as 2≥n
 

[ ]
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 (18)  
 
where  is the vector of design variables; 

 are the cost functions, normally nonlinear, 

multimodal and not necessarily analytic;  is the design 
space, which is limited by lateral and inequality constraints 

[ T
kx,,x,x K21=x

( ) n,,,i,fi K21=x
kRC ⊂

( )xjg . 
Evolutionary algorithms (EAs) are widely used to deal with 

engineering optimization problems due to their ease of 
implementation and robustness (Eschenauer et al., 1990). The 
algorithm used to solve the optimization problem dealt within this 
paper is the so-called Non-dominated Sorting Genetic Algorithm 
(NSGA) originally developed by Srinivas and Deb (1993). The 
NSGA mainly differs from the classical multiobjective genetic 
algorithm in the way the selection operator is used. After ranking 
the whole population, a same dummy fitness value is provisionally 
assigned to the members of the first front of Pareto. This fitness 
value provides an equal reproductive pressure for these individuals, 
and with the aim of maintaining the diversity of the population, a 
sharing technique is applied and the fitness value is recomputed 
accordingly. The fitness is shared when an individual has at least 
one close neighbor, resulting in the multiplication of its fitness index 

by the factor . The sharing is performed 

according to Srinivas and Deb (1993): 

([∑ =
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      (19)  

 
where ( )ji x,xd  is the Euclidian distance between the two 

individuals  and , and ix jx σ  is a constant named sharing 
coefficient, whose value must be chosen by the analyst. 

For a viscoelastic system, once the frequency band of interest 
has been selected, the FRFs whose amplitudes are to be attenuated 
can be used to define performance indexes (Rade and Steffen, 2000) 
to be optimized for the selection of a set of optimal continuous 
design variables and a set of optimal positions of the surface 
viscoelastic treatments. For the problem considered here, where  

resonance peaks of the FRF  are to be minimized within a 
frequency band , a possible performance index can be 
defined as follows: 

Rp

( T,ˆ ωH )
UL ωωω ≤≤

 
( ) ( )[ ] ( )[ ]{ }T,ˆabs,,T,ˆabsmin, Rppv ωω HHxxJ K1=  (20)  

 

where  indicates the vector containing the design variables, and  
represents a set of discrete positions of the viscoelastic treatments. 

vx px

NSGA Coupled with Metamodels 

Since NSGA is a stochastic iterative method requiring a large 
number of evaluations of the problem solutions, the cost of 
computations frequently becomes a limiting factor. Hence, the 
authors found convenient to combine NSGA with approximate 
models in order to reduce the computation burden associated to the 
optimization process. In the literature one can find several works 
describing coupling between optimization algorithms and 
metamodels (Soteris, 2004). The use of ANNs for nonlinear 
problems containing a large number of continuous and/or discrete 
variables is found to be more interesting due to the typically smaller 
computing time, as compared to response surface methodologies. In 
this work, MLP artificial neural networks are used in combination 
with NSGA with the aim of approximating the amplitudes of the 
damped responses in the frequency domain. The mechanism of 
search for the optimal solutions by this strategy can be briefly 
described as follows: (i) the MLP is trained and tested with exact 
evaluations of the robust condensed model; (ii) NSGA is used to 
explore the good solutions in the design space; (iii) once NSGA 
produces a new solution, the MLP is used to determine its fitness 
value so that NSGA continues the search until a stop criterion is 
satisfied. A re-initialization of the MLP is necessary to reduce the 
error between the approximate and exact solutions. This procedure 
is illustrated in Fig. 4. 
 

Generation k

Generation k+1

Selection    Initialization
with metamodel?

Selection
Crossover
Mutation

Optimal solutions

Reduced model/Base of training

Re-initialization ANN

not
yes

 
Figure 4. Illustration of a general NSGA-MLP coupling procedure. 

Numerical Application 

Evaluation of the Robust Reduction Basis 

In this section, the interest is to verify the robustness of the 
reduced viscoelastic model generated by the use of the proposed 
condensation method described in Section 5. Figure 5 depicts the 
test structure composed of a freely suspended stiffened panel 
containing four stringers. The FE model without viscoelastic 
treatment is composed of 928 elements having a total number of 
5940 DOFs. The viscoelastic treatments, also indicated in Fig. 5, is 
composed of 10 viscoelastic patches, each one comprising 16 three-
layer sandwich plate elements, developed according to the theory 
presented in Section 3. The FE model of the treated panel contains a 
total number of 6840 DOFs. The geometric dimensions are: internal 
radius: 938 mm; length: 720 mm; arc length: 680 mm; thicknesses 
of the panel and the stringers: 1.5 mm and 0.75 mm, respectively; 
height of the stringers: 30 mm. The material properties for both 
panel and stringers are: Young modulus E = 2.1 × 1011 N/m2; mass 
density ρ = 7800 Kg/m3; Poisson ratio υ = 0.3. The material properties 
of the constraining layer are the same as those of the stiffened panel, 
and for the viscoelastic core, one uses the modulus function of the 
commercially available 3M® ISD112 (ρ = 950 Kg/m3), whose 
properties are provided by equations (1). The nominal values of the 
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thicknesses of the viscoelastic and constraining layers are h2 = 
0.0254 mm and h3 = 0.5 mm, respectively. 

To account for the inherent damping of the untreated structure, 
the hysteretic damping model was used for the metallic components, 
represented by a complex, frequency-independent moduli of the 
form ( kkk iEE η+= 1 ) , with (k = 1, 3). 0020.k =η
 

 
Figure 5. FE model of a stiffened panel treated with constrained 
viscoelastic layers. 

 
The first test is intended to evaluate the nominal enriched basis 

of reduction by using the static residues associated with the 
external and viscoelastic forces, according to Eq. (13). The 
computations consisted in obtaining the driving point FRFs 
associated with point P, indicated on Fig. 5, assuming the 
temperature of the viscoelastic material of 25ºC, and the frequency 
band of interest [135-210Hz]. One considers three nominal bases: 

(60 eigenvectors); (60 eigenvectors, 1 

residual vector computed according to ); 

(60 eigenvectors, 1 residual vector computed 

according to , 54 residual vectors computed 

by

[ ]001 ϕ=T [ RT 002 ϕ= ]

]
bKR 1

0
−=

[ 0
003 vRRT ϕ=

bKR 1
0
−=

0
1

0
0 ϕvv KKR −=  after SVD filtering). It is to be noted that the 

residues  were computed based on the largest singular values, for 

which the relation 

0
vR

5
1 101×≤iσσ  for  holds. 601 toi =

Figure 6 shows the amplitudes of the FRFs computed by using 
the three nominal bases, as compared to the amplitudes of the FRF 
computed by using a reference reduction basis formed by a far 
larger number of eigenvectors (600) and residual vectors (600). It 
can be clearly seen that the accuracy is continuously improved 
upon successive enrichment of the reduction basis by the inclusion 
of residual vectors accounting for the static residues associated 
with the external loading and damping forces, to form the nominal 
basis  and , respectively.  02T 03T

The interest now is to evaluate the robustness of the nominal 
basis further enriched to account for structural modifications 
introduced into the nominal model, according to Eq. (17). The 
modification considered consists in increasing the thickness of the 
constraining layer of the nominal system in 90%. Figure 7 enables 
to compare the amplitudes of the FRFs for the nominal and 
perturbed damped systems; both computed using the same reference 
reduction basis, without further enrichment for structural 
modifications. It can be seen that the dynamic behavior of the 
perturbed damped system does not differ appreciably from that of 
the nominal system, although damping levels are strongly 
influenced. In Fig. 8(a), the FRF of the perturbed reference system 

is compared to the counterpart computed by using the nominal 
basis [ ]0

003 vRRT ϕ=  containing 115 vectors. The observed 
differences lead to conclude that this basis is not capable of 
representing accurately enough the changes of the dynamic behavior 
induced by the structural modifications introduced. Figure 8(b) 
enables to compare the FRF of the perturbed reference system to the 
counterpart computed by using the basis  containing 
146 vectors (including 31 SVD-filtered residual vectors associated to 
the structural modifications). 

[ ΔRT 034 Τ= ]

This time, one can observe a very satisfactory agreement between 
the amplitudes of the FRFs of both models. This leads to conclude that 
the reduction basis  is robust enough to represent the response of 
the perturbed system in the frequency band of interest. 

4T

 

 

 

 
Figure 6. FRFs of the reference and reduced systems using the basis: 
(a) ; (b) ; (c) . 01T 02T 03T
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Figure 7. FRFs computed for the nominal and perturbed systems for the 
reference reduction basis. 

 

 

 
Figure 8. FRFs computed for the nominal and perturbed systems using 
the basis: (a) ; (b) . 03T 4T

Optimization combining NSGA, robust condensation 
and ANNs 

After having verified the robustness of the model reduction 
technique applied to viscoelastic systems, the interest now is to 
evaluate the proposed multicriteria optimization strategy coupling 
NSGA, robust condensation and ANNs, as described in Section 6.1, 
for the optimization of the stiffened panel treated with viscoelastic 
constrained layers. In this application, the viscoelastic treatment is 
composed of 15 viscoelastic patches, each one composed of 16 

three-layer sandwich plate FEs. The objective functions are the peak 
amplitudes of FRFs for modes 10, 11 and 14, with the aim of 
increasing the damping performance for these modes by minimizing 
the amplitudes of the FRFs in the vicinity of the corresponding 
resonance peaks. The choice of these modes is justified by the 
amount of modal strain energy observed for them (Johnson and 
Kienholz, 1982). The optimization problem is formulated as a mixed 
discrete-continuous one according to Eq. (20). The continuous 
design variables considered, expressed in terms of their nominal 
values and admissible variations are: thicknesses of the viscoelastic 
layer, (h2 = 0.0254 mm, ±70%), and constraining layer (h3 = 0.5 mm, 
±50%), and the temperature of the viscoelastic material (T = 25ºC, 
±15%). As discrete variables to be optimized one considers the 
positions of each viscoelastic patch. Only the admissible ranges of 
the continuous variables defined previously are taken as lateral 
constraints in the optimization problem. The optimal positioning of 
the patches is chosen among a previously selected set of candidate 
positions, accounting for the FE mesh. Both types of variables are 
dealt with in an integrated fashion within NSGA. It should be noted 
that, although the temperature is a parameter upon which one has 
little control in practical applications, it is considered as a design 
variable, since, as temperature has a strong influence on the 
viscoelastic behavior, it becomes important to evaluate the 
robustness of the optimal solutions with respect to its variations. 

The parameters of the NSGA are defined as follows: population 
size: 30; selection probability: 0.25; crossover probability 0.25; 
mutation probability: 0.25; sharing coefficient: σ = 0.2. For the 
MLP-ANN, it was chosen to use two hidden layers and twenty 
neurons per layer. The objective functions are calculated based on 
the robust reduced viscoelastic damped model for which the 
nominal basis of reduction, constructed according to Eq. (13), is 
composed of 121 vectors (60 eigenvectors, 1 vector related to the 
static residue, and 60 residual vectors related to the viscoelastic 
forces). The robust basis of reduction is enriched during the 
optimization process accounting for structural modifications of the 
continuous design variables, according to Eq. (17). The total number 
of generations of the NSGA was limited to 100, which means that 
the maximum number of evaluations of cost functions was 3000. 
For that, the neural network is updated at each 20 generations after 
generation 5, enabling to reduce the number of exact evaluations 
from 3000 to 170. The CPU time required for the two optimization 
runs were found to be: for NSGA only: 1634.4 min; for the 
combination NSGA-MLP: 146 min. This leads to conclude that the 
NSGA-MLP procedure allows a significant reduction of the 
computation time during the optimization process, with a reduction 
ratio of approximately 89%.  

Figures 9(a) and 9(b) show the solutions obtained by using only 
NSGA (thus without any metamodeling approximation) and those 
obtained by using the coupling procedure NSGA-MLP. For both 
groups, one uses the robust reduced model. By comparing the first 
front of Pareto for the amplitudes of modes 10 and 11, one can 
conclude that the NSGA-MLP approach represents quite well the 
response of the viscoelastic system, as demonstrated by the 
similarity of the two clouds of solutions. 

Figure 10 depicts the amplitudes of the driving point FRFs 
associated to point P (see Fig. 5), corresponding to the optimal 
solutions indicated as A, B and C in Fig. 9(b). They are compared to 
the amplitudes of the FRFs of the panel without viscoelastic 
treatment. One can see that all the three solutions lead to significant 
amplitude reduction, although they differ from each other. For 
example, solution A leads to a better damping performance for 
mode 10 as compared to 11. In the opposite, solution C is more 
effective for mode 11 than for mode 10. Solution B corresponds to 
similar damping performance for both modes 10 and 11. All the 
three solutions provide very similar effectiveness for mode 14. 
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Figure 10. FRFs for the optimal design solutions: (a) A, (b) B, (c) C. 

 
Figure 11 illustrates the optimal positions of the viscoelastic 

patches for the solution B and the optimal values of the thicknesses 
of the viscoelastic and constraining layers for each patch are given 
in Table 2. For this optimal solution, the optimal value of 
temperature of the viscoelastic material was found to be 21.25ºC. 
 

 

Figure 9. Solutions obtained by using NSGA and NSGA-MLP: (a) three 
objective functions; (b) front of Pareto for the cost functions M10 and M11. 

 

 

Figure 11. Optimal positions of the viscoelastic treatments corresponding 
to solution B. 

 
Table 2. Optimal values of the design parameters for solution B. 

Patches 
1,2,3,5 4,6,7,10,12,13,15 8,9,11,14 

h2 [m] 
×10-5

h3 [m] 
×10-3

h2 [m] 
×10-5

h3 [m] 
×10-3

h2 [m] 
×10-5

h3 [m] 
×10-3

1.02 0.55 1.02 0.65 1.19 0.65 
1.49 0.65 1.02 0.65 1.21 0.65 
1.02 0.61 1.02 0.65 1.02 0.65 
1.02 0.65 1.02 0.65 1.87 0.65 

 

Concluding remarks 

A multiobjective optimization procedure combining 
evolutionary algorithms, robust condensation and metamodeling, 
intended to be adapted for dealing with large systems containing 
viscoelastic damping was suggested and evaluated. The original 
aspects of the procedure reside in the adaptation of the concept of 
robust condensation, initially developed for undamped structures, 
for systems containing viscoelastic damping and the use multilayer 
perceptron Artificial Neural Networks to approximate the responses 
of the system within the optimization procedure, aiming at reducing 
the computational cost. 

Numerical applications were devoted to the optimization of 
constrained viscoelastic layer surface treatment applied to a 
reinforced curved panel, involving the optimization of both
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positioning and dimensioning of viscoelastic patches. The 
obtained results demonstrated the effectiveness of the 
optimization strategy mainly in terms of the drastic reduction of 
computation time required to obtain the optimal Pareto solutions, 
which demonstrates that the suggested technique is well adapted 
to be applied to complex industrial structures.  

As current developments, it is being considered the 
integration of other metamodeling strategies to approximate the 
response of large viscoelastic damped systems based on the use 
of classically and adaptive response surface methodologies, and 
the use of radial basis functions. Also, techniques intended for 
the evaluation of the robustness of the optimal solutions with 
respect to uncertainties in the viscoelastic parameters and 
stochastic analysis of viscoelastic structures are being addressed 
by the authors. 
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