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Abstract

In order to reduce vibrations or sound levels in industrial vibroacoustic
problems, the low-cost and efficient way consists in introducing visco- and
poro-elastic materials either on the structure or on cavity walls. Depending
on the frequency range of interest, several numerical approaches can be used
to estimate the behavior of the coupled problem. In the context of low fre-
quency applications related to acoustic cavities with surrounding vibrating
structures, the finite elements method (FEM) is one of the most efficient
techniques. Nevertheless, industrial problems lead to large FE models which
are time-consuming in updating or optimization processes. A classical way
to reduce calculation time is the Component Mode Synthesis method (CMS),
whose classical formulation is not always efficient to predict dynamical behav-
ior of structures including visco-elastic and/or poro-elastic patches. Then,
to ensure an efficient prediction, the fluid and structural bases used for the
model reduction need to be updated as a result of changes in a paramet-
ric optimization procedure. For complex models, this leads to prohibitive
numerical costs in the optimization phase or for management and propaga-

tion of uncertainties in the stochastic vibroacoustic problem. In this paper,



the formulation of an alternative CMS method is proposed and compared to
classical (u,p) CMS method: the Ritz basis is completed with static residu-
als associated to visco-elastic and poro-elastic behaviors. This basis is also
enriched by the static response of residual forces due to structural modifi-
cations, resulting in a so-called robust basis, also adapted to Monte Carlo
simulations for uncertainties propagation using reduced models.

Key words: component mode synthesis, vibroacoustics, uncertainties,

viscoelastic damping, poro-elastic damping

List of symbols

u structural displacement
v velocity on a surface
n normal vector of fluid domain
P pressure
V structural domain
Vi fluid domain
Su surface of fluid-structure coupling
Sa acoustic absorbing surface
ovJ structural surface on which external force is imposed
f, external force imposed on structure
c speed of sound in fluid
Pf fluid density
Z, acoustic impedance
w angular frequency
f frequency



U structural displacement vector, physical coordinates
q’ structural displacement vector, general coordinates
U random vector corresponding to U

P pressure vector, physical coordinates

q’ pressure vector, general coordinates

P random vector corresponding to P

M mass matrix

M reduced mass matrix

M random matrix corresponding to M

K stiffness matrix

K reduced stiffness matrix

K random matrix corresponding to K

Ay absorbing matrix

Ay reduced absorbing matrix

A random matrix corresponding to Ay

F, external force vector

C coupling matrix

Y physical coordinates vector

0 random variable

G shear modulus of viscoelastic material

Ty, Ty reduction bases of structure and fluid domains
T temperature

real part

first statistical moment

H =
—_~~
ARG



1. Introduction

In transports industry, reduction of vibration and acoustic levels using in-
dustrial vibroacoustic numerical models leads to large and costly problems.
Solving dissipative systems in presence of uncertain parameters is still a chal-
lenge. The techniques which are classically used in the low frequency range
are the finite/infinite elements or boundary elements methods [1], their fre-
quency limits being directly related to the size of the elements compared to
the wavelength and to the computer limits. When the frequency range of
interest is becoming too high for these approaches, some specific methods
are available, often based on wave approaches or power/energy flow analy-
ses [2]. In this paper we will mainly focus on a specific problem, which is
the vibroacoustic analysis of damped closed systems, exhibiting an acoustic
cavity surrounded by a vibrating structure. For this kind of problem, the
finite element method is clearly the most appropriate technique to deal with
industrial geometries, even if it is limited to the low frequency range, which

is the domain of interest in this work.

Vibroacoustic conservative problem

Because of the proximity of the problem topology with structural dy-
namics, the concept of modal analysis has been naturally extended to vi-
broacoustics. In the low-frequency range, this is of particular interest in the
context of engineering design, since some trends can help the designer to
make decisions using a fully conservative model, which is easy to implement
numerically. Modeling damping terms is clearly the hardest thing during

the whole process, so using conservative models avoid a difficult step, which



can be acceptable only at early design stage, in particular in applications
where noise and vibrations are among the design criteria. In this context,
using vibroacoustic normal modes can be interesting in a engineering point
of view.

In a numerical point of view, even this non-dissipative case still induces
difficulties, in particular because the finite elements method (FEM) based
on the classical displacement-pressure (u,p) formulation leads to a coupled
problem which is large and not symmetric [3], and the very efficient eigen-
value solvers dedicated to symmetric problems, which have been developed
for years, can not be applied. Of course, more general solvers can be used,
but an alternative way is to transform the initial problem in a symmetric
one, using symmetrization techniques [4, 5|. These techniques can be either
based only on mathematical considerations (by transforming unsymmetric
matrices into symmetric ones), or on physical considerations, by choosing,
instead or added to pressure p, another variable in the fluid domain. Among
the available descriptions, it has been shown [3] that using the displacement
potential leads to a well-posed problem in the static case. Some other for-
mulations leading to symmetric system are for example field displacement,
which is complicated by its irrotationality constraint [6]; velocity potential,
whose topology is not classic [7, 8] (the double sized state-space has to be
used for eigenvalue problem); or combination of two variables, pressure and

displacement potential for example [9, 3], which doubles the number of DOFs.



Vibroacoustic damped problem

In order to practically reduce sound level, the low-cost and efficient way
consists in introducing visco- and poro-elastic materials, most of the time
after the initial design of the structure. The case of viscoelastic damped
structure coupled with compressible fluid is considered here and the finite
elements (FE) model of visco-elastic structures which is used in this paper
is available in literature [10, 11]. Resonances dominated by fluid cavity are
controlled by poro-elastic materials. The two classical ways of using such
materials in FE models is either to consider the acoustic impedance of the
material (the material being modeled by a boundary condition on fluid do-
main) or to consider the modeling of porous media using for example the
Biot-Allard theory [12, 13, 14] whose FE models need a discretization of the
poro-elastic domain. For both approaches, the frequency dependence of ma-
terial parameters is undoubtedly a key point for efficient representation of
physical phenomenon, even if it induces difficulties for the resolution of the
problem. This resolution is also affected by the size and the topology of the
FE models. For frequency responses evaluations, direct resolution of these
models are time-consuming and dynamic reduction method [15] is most of
the time necessary, in particular when one is interested in the optimization
of the choice of absorbing materials (material characteristics, positioning,
uncertainties management...). Normal modes of coupled system could be
used, but the topology of the system and the high number of DOF's induce
numerical difficulties for finding eigenmodes of the coupled system. There-
fore, decoupling of domains (fluid and structure) is often considered, normal

modes of in vacuo structure and rigid walls cavity are classically used for



modal reduction. Unfortunately, it has been shown [16] that these reduction
strategies have bad convergence properties that can be physically explained
by the velocity discontinuity at the fluid-structure interface, which have been
replaced by rigid walls. Even if an infinite number of modes would be used,
the exact solution in terms of velocity could not be achieved.

In literature [3], it has been proposed to use the displacement potential as
unknown variable in the fluid domain and its decoupled modal basis was en-
riched by static response of cavity induced by the deformation of structure.
This is an efficient approach but difficult to use when an acoustic absorb-
ing material is introduced and modeled using normal impedance boundary
condition. Recently [17], an equivalent method has been proposed, using
pressure as unknown variable, leading to the same difficulty. Identically, the
use of pseudo-static corrections for both decoupled modal bases has been in-
vestigated [18]: this technique uses static corrections of Ritz basis for elastic
structures and has a limitation due to singularity of fluid matrix and can be
difficult to adapt to the component synthesis approach.

The first point which is addressed in this paper is related to the improvement
of CMS techniques for vibroacoustics: the classic decoupled bases are used
first, and then the fluid basis is enriched by cavity residuals vectors associ-
ated to specific boundary conditions on the coupling interface, in order to

improve convergence.

Stochastic vibroacoustic damped problem

When dealing with absorbing material for vibroacoustics, uncertainties
are of first importance for engineering applications, since corresponding ma-

terials are most of the time based on polymers or composites which have
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complex mechanical behavior (anisotropy, visco elasticity, frequency and tem-
perature dependance...) and most of the time exhibit uncertain behavior, due
to material and manufacturing dispersions or environmental conditions. Ba-
sically, two approaches can be used to deal with uncertainties in the context
of FEM, the parametric approach (stochastic FEM) and the non-parametric
approach.

The non-parametric approach has been proposed some years ago [19]. In
this approach, which is adapted to complex industrial cases with many un-
certainties, the idea is that the whole set of uncertainties (including material,
manufacturing, environmental, models uncertainties) can be represented by
a single dispersion parameter (or a reduced set of parameters). Some mathe-
matical tools have been developed to build a set of random matrices that are
used in a Monte Carlo simulation to estimate the variability of the response.
The method, which was first developed for positive definite matrices, has
been recently extended to vibroacoustics [20]. This approach is well adapted
to uncertainties propagation, but it does not allow one to estimate the im-
pact of a given physical parameter to the global dispersion, which is of first
importance in design phase or optimization processes.

The parametric approach [21] is used in this paper. It requires the para-
metric description of random variables, and some stochastic bases are used
to project the uncertain response of the system. The calculation cost can
be very large, since many iterations are required, depending on the strat-
egy chosen. In any cases, model reduction can help to reduce calculation
cost, providing that the reduced model can represent the behavior of the full

model. The classical model reduction strategies which have been discussed



above must be updated as soon as one parameter varies. In this paper, a spe-
cific effort is made to define a so-called robust basis, which does not require
updating after parametric changes, in order to use it efficiently in inverse
problems (e.g. in the case of optimization) or during the direct random anal-
ysis problem (uncertainties propagation).

The construction of the bases associated to uncertainties propagation is based
on parametric approach. Fluctuation of random variables around their nomi-
nal values is considered as modifications according to nominal model and this
set of modifications induces a set of residual forces which act on the nominal
model. Robust basis is established by enriching the Ritz basis of nominal
model with dynamic vectors (corresponding to a deterministic frequency) or
static responses of nominal model due to modification forces. This strategy
allows one to obtain a final reduced problem with a small size that can be

efficiently used in iterative procedures.

2. Formulation of vibroacoustic problem

2.1. Coupled formulation

The internal vibroacoustic problem which is considered in this paper is
presented in figure 1. Let V be the fluid domain, V; the structural domain, S,
the fluid-structure coupling interface and S, the acoustic absorbing surface
characterized by acoustic impedance Z,(w). The equations describing the

permanent harmonic response at frequency w of fluid domain in terms of



Figure 1: Description of vibroacoustic problem

pressure variable are [3, 9, 22]:

2

w
dp 2

e 1
o pfo; U, on S, US,, (b) (1)
Un = Za(w) on Sa. (C)

In order to be well-posed in the static case (w = 0), the following constraint

/ pdV = —pfc2/ undS, (2)
Vf SuUSq

which leads to the static solution p°:

is introduced [17]:

2
p’ = e u,dS. (3)
Vf SuUSq
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In the dynamic case (w # 0), any solution of (1) always satisfies the constraint

(2).

A weak variational formulation of vibroacoustic problem is:

for all admissible (du, 0p), find (u, p) such that:

(0= k*(u,du) — w?m®(u,ou) — [, pnéuds
—favsf f.ouds,

0= LOV¢V&MV¥—§j%p&MV (4)
—w?ps [ undpdS + jw Zf(fw) [s, popds,

0="J,pdV +psc® [5 s, undS.

k* and m? are structural stiffness and mass operators, 9V, is the structural
surface on which the external force is imposed.

The FE discretization of (4) can be written as:

KU —w*M,U — CP = F, (5)
Jjw
KiP—w’M;P+ ———A;P — p;w?*CTU =
7 w My +Za(w) 7 prw C U =0, (6)

where K, M, are structural stiffness and mass matrices, K; et M; are re-
spectively matrices corresponding to the discretization of kinematic energy
and compressibility matrix of fluid (named ”stiffness” and ”mass” matrices
of fluid in the following). K; € RN*Ns is symmetric positive semi-definite of
rank Ny — 1, M; € RN7Nr is symmetric definite positive; C' is the coupling
matrix; Ay is the absorbing acoustic matrix, symmetric and depending on

the geometry of S,; F; is the external force vector.
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Combining (5) and (6) allows one to obtain the classic unsymmetric system:

K, —-C N A
- W
0 Ky prCT My
w |00 U F,
+ 2 = (7)
Zaw) | 0 A P 0

This can be written in a compact form:

K —w’M+ —"_AlY = F
[ w + Za(w) ] Y (8)
where:
K, -C M, O 0 0
K = 3 = frd
0 Kf prT Mf 0 Af (9)
U F,
Y = ; =
P 0

2.2. Acoustic modes

Acoustic modes are solutions of the eigenvalue problem using rigid cavity

boundary conditions:

/ 2
Op .
o 0 on rigid walls, (b) (10)
/ pdV = 0. (c)
\ Vy

The associated weak variational formulation is:

2
/ VpVopdV — = | popdV = 0. (11)
Vi ¢

2
Vy
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Then, the discretization corresponding to equation (11) is:
(Ky—w?My) P =0. (12)

It is easy to see that (w = 0;p = const) is a trivial solution of (10ab), but it
does not satisfy the constraint (10¢). On the opposite, (10¢) is automatically
verified by all the solutions (w # 0) of (10ab).

3. Model reduction of deterministic vibroacoustic problem

3.1. Classical reduction using decoupled basis

One can project now (7) on the decoupled basis Ty and T containing in

vacuo structural modes and rigid wall cavity modes:
N ny
U=) Usgs=Ta", P=) Puaf=Tsd, (13)
B=1 a=1

where ¢ are the modal coordinates. One obtains the reduced system:

g o—c] [ a0
p— _w — —

0 Ky prCT My
: 0 0 s ja)

e . q — , (14)
Zaw) | 0 A q 0

where:
Ks = TgTKsTsa Ms = TSTMsTsa

C=TICTy, Kj=T}KTy,
Mf :TfTMfo, fIfITfTAfo,
F,=TIF..

(15)

The fluid basis T is defined using rigid wall instead of coupling interface,

inducing that the velocity continuity is not satisfied on the coupling interface.
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Therefore the response can not converge exactly (in terms of velocity) to the
accurate solution even if many modes are introduced [16]. To improve the
convergence, T is enriched by static response p® defined by (3). p® is constant
in space at each given w, so it can be written p® = q(]; Do, where py is the static

cavity mode [17] corresponding to w = 0:

P=> patl+1" = patl, (16)
a=1 a=0

or, in a discretized form: )
P=>" Pl (17)
a=0
In the case without absorbing area S,, the system (14) can be transformed
to a reduced symmetric system by using decomposition (16). If the cavity
modes p, have been "mass”-normalized, variational equations (4) with p
defined by (16), using test function 0p = p,, @ = 0, ..., n leads to:

k*(u,6u) — w?m®(u, fu) — qu(]/ néudS

u

- / ¢l ponéuds = [ foudS, (18)
a=1 u 8st
q(]; = _pfp0/ undsa (19)
(w2 —w?) gl — (.U2pf/ UnpadS =0, Ya € N™. (20)

The elimination of variable qg leads to:

E*(u,0u) — w?m*(u, du) + pfpS/ u,dS | néudS
u Su

—Z/ qf;pan(SudS:/ fouds, (21)
a=1 u S

f
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(2 =) af ~ oy | wapndS =0, Ya € A, (22)
Su

or, after discretization:

"1
(Ko+ K) U —w’M, =) FCPaqj;

a=1 ¢
— p
~Y Penpicty <k, (23)
a=1 &
1 2 2
(p_f_p;um)qi—%PECTU:O, Yo € N, (24)

where K, is obtained by the discretization of pg [5 u,dS [, ndudS. Using
the fluid basis Tt containing normal modes F,, the combination of the two

equations below leads to the following symmetric system:

K, + K, 0
- (25)
0 diag <E>
) | Mo+ e CTydiag () U F,
sym diag (Pfti) q’ 0

in which the matrix M, = E 'O—J;C’PQP;{ CT is symmetric. The reduced
w
a=1 ¢

symmetric system is expressed in hybrid coordinates (physic: U, modal:

a’).
To complete the reduction on modal basis, U is now projected on the solutions

of the following eigenvalue problem [3, 17]:
(K + K.) Us = wi (M, + M.) U, (26)

where U is a structural mode of the structure including added mass and
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stiffness effects of fluid, associated to K. and M.. The projection of U is:

U= Z qug =Tsq". (27)
B=1

This gives the reduced model expressed with generalized coordinates:

diag(w3) 0 (28)
: 1
0 diag (E)
] Cdiag (5) o | [ 1R
sym diag (pr3> q' 0

It should be emphasized that the above equations have been obtained with-
out acoustic absorbing area S,. When S,, characterized by Z,, is present,
the variables in equations leading to (21) and (22) are linearly dependent
(because of the Ay terms), therefore that transformation leads to a complex
reduced system which is not easy to implement. An alternative way to obtain

a reduced model in such a situation is presented in the next section.

3.2. A CMS method using decoupled basis enriched by residual response vec-

tors

In this section, a simple and efficient modal synthesis method is pro-
posed, based on the enrichment of decoupled fluid basis by selected resid-
ual vectors which are responses of fluid cavity caused by interface operators
(fluid-structure coupling surface and absorbing area).

Equation (6) can be rewritten as:
Jjw

(Kf — w2Mf) P =w?p;CTU — Z0(@)

AP = Frg + Fq, (29)
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in which Fj, and Fy, denote external forces caused by structure and by
absorbing surface:
Frs = w’p;CTU  (a),
Fro = —-2A;P (b).

T Za (w)

(30)

These forces are linked to the unknowns of the problem. The objective
consists in determining their responses to enrich fluid basis defined by (17).
Structural basis is still 7§ containing the normal modes of in vacuo structure.
Fts and Fy, can be evaluated using modal projection of displacement and

pressure in their expressions:

Frs = w?p;,CTTiq° (a), (31)
Ffa ~ —#‘(“;)Afoqf (b)

In structural dynamics, static responses are classically used to determine
residual vectors. In presence of fluid, the singularity of Ky can induce
numerical difficulties, however one can modify it by adding an extra term
a.My which is proportional to fluid mass matrix. To well represent the
behavior of system, . should be within the frequency band of interest:

Qe = W2 We € [Winin Wmae)- Residual vectors are introduced by:

ATfs = (Kf—ngf)_l CTTS,

B (32)
ATfa = (Kf—ngf) Afo.

Thus enriched fluid basis is now:
Tye = [Ty ATy ATy, (33)

A singular values decomposition (SVD) of Ty, can be realized to guarantee

good conditioning by selecting the largest directions of the space, resulting
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in a reduction of vector numbers [23].

Reduced system is the same one as (14) with T replaced by Ty.. It should
be noted that to count static response of higher structural modes (which
are dropped out of Ty) T contains now also static mode F,. Efficiency and
performance of this reduced model can be compared to the reduced problem

(14) which uses the classical decoupled bases.

3.3. Model reduction of structure with viscoelastic damping

Now, consider the case in which the structure includes damped viscoelas-
tic patches. In this case, stiffness K can be separated into two parts, one
being purely elastic, constant, and the other one being viscoelastic, frequency

and temperature dependent:
Ki(w) = Kee + G(w, T) K 4. (34)

Thus, the FE model of the structure with viscoelastic damping can be written
as

(Ko + G(w, T)K,, — W M,U = F,, (35)

where G(w, T') is the shear modulus of viscoelastic material, mainly depend-
ing on frequency w and temperature 7', and possibly to other environmental
factors. The figure 2 shows a nomogram in reduced frequency of viscoelastic
material 3M 1S5D112 allowing the synthetic representation of frequency and
temperature evolution of the shear modulus G(w,T'). The reduced frequency
is defined by: w, = arw in which ap is function of temperature 7. More

details about visco-elastic aspects can be found in references [10, 11].
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Figure 2: Nomogram in reduced frequency of material 3M ISD1127M and associated

reduced frequency ar

In the model reduction strategy, it is better to use a basis which is
not frequency dependent. To achieve this, one can for example use nor-
mal pseudo-modes [24] or multi-model [25]. In this study, one considers the
multi-model approach. Let [wimin ; Wmaz] be the frequency range of interest
and we € [Wmin ; Wmaz| be a specific value of frequency, then the complex
stiffness is K(w.) = Ky + G(we, T) Kg,. The basis Tyy containing the modes

of associate conservative problem can be calculated easily:
[%{Ks(wc)} - W2MS]U = 07 (36)

where R{.} stands for real part. This basis is then enriched by the static

response ATy, of system (36) to viscoelastic force defined as follow:
ATy = [R{K,(w:)}] " KyTho, (37)

which defines the enriched basis T = [Tso ATy|. If the basis T} is not efficient

enough to insure the convergence, in particular if the frequency range is very
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large, several values of w. can be used to build the basis Tyy. The reduced

model is:

{Ke +Gw, T)K,, — WQMS}qS =F,. (38)

Note that with this basis, the reduced matrix K, and M, are not diagonal.

3.4. FExtension of Craig-Bampton dynamic substructuring
The classical Craig-Bampton basis of a subdomain k is written for a

structural subdomain or a fluid one:

. I 0
™ = for structure, (39)
—(Kip)'Kip 0,

and
I 0

TV = for fluid. (40)
—(KI) 'K 0y

I index is related to internal DOFs, while F' index is associated to fixed DOFs.
VU, contains normal modes of structural subdomain fixed on interface, ¥y
contains normal modes of fluid subdomain with boundary condition P = 0
on interface.
If the structure includes viscoelastic damping patches, matrices K7, and K7,
will be replaced by K7, (w = w,) and K7z(w = w,) like proposed in litterature

[11]. Associate basis is thus Wy = [V AW, in which Wy, contains solutions

of the following equation:
{R(Kj(we)) — M } U =0, (41)
and AW is determined by
ATy(we) = [R (K7 (we)] ™ K7y Tuo(w;). (42)

20



According to section 3.2, for a fluid subdomain which has coupling surfaces
S% with structure and absorbing surface Sék), basis W is now replaced by

enriched basis Uy = [V AW, AWy,| where AWy and AWy, are:

—1
AUy = (K{I_WCQM{I) CITIZTsa

T AN (43)
AUy, = (KH_%MH) AVy,

in which T, symbolizes the set of all substructural bases coupled with the

considered fluid sub-domain.

3.5. Simulations

I

Figure 3: FE model of cavity coupled with plate treated by viscoelastic patches and three

rigid walls treated by poroelastic patches

An acoustic cavity (fig. 3) of size a x bx ¢ = 0.654 x 0.527 x 0.6 m? is cou-
pled with a flexible plate which is treated by viscoelastic patches 3M I.5D112
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(Figure 2) at T" = 25°C', the other walls are rigid. On three perpendicular
rigid walls, poro-elastic patches are sticked, they are characterized by acous-
tic impedance Z,(w) given in figure 4. A harmonic point force located in
(x = 0.191m;y = 0.198m) is exciting the plate, and the frequency range of
interest is [0; 300]H z.

2000 Re (Za)

-2000 | b
-4000 |m(za) h

-6000 1

s/m)

(Pa

-8000 1
(]

z

—-10000 1

-12000 1

-14000 1

-16000 1

_18000 L L L L L L L
0 200 400 600 800 1000 1200 1400 1600

frequency (Hz)
Figure 4: Acoustic impedance of absorbing material Z,(w)

The characteristics of the plate are:
- base plate:
axb=0.654 x 0.527 m?,
E, =7 x10%Pa; v, = 0.33,
hy =3 x 1072 m;

- viscoelastic layer: hy = 2.54 x 107° m;
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- constrained layer: Fs3 = 2.5x10°Pa; v5 = 0.33; hy = 5x 1074 m.

The plate is meshed using 24 x 24 ANSY'S SHELLG63 elements (thin plate).
For the fluid domain, 24 x 24 x 12 FLUID30 elements are used. This mesh
guarantees 6 elements per wavelength in the frequency range of interest (up

to 300 Hz).

Two indicators are used to present the results, the acoustic power P; and

the mean of quadratic velocity V,2:

1 1
p, = / (—pp*—l— 2Vpr*> v, (44)
v, \ 40y dpyw

72 = ﬁ / W2dS, (45)
S

where p* stands for the conjugate of p.

Two cases are considered. Case 1 corresponds to cavity with viscoelastic
plate and case 2 corresponds to cavity with viscoelastic plate and poro-elastic
patches (surface S,).

In order to build the normal modes of multi-model method, one value
we = 150 x 27 (in the middle of band) is used. Basis T, contains 41 modes:
20 normal modes of Ty, (criterion 2 X fy42), 20 modes of ATy and one vector
corresponding to static residual response to force Fy. Basis T has 30 modes
contained in the frequency band [0; 3 X fy,4,] While AT}, contains 36 vectors
and AT}, contains 29 ones. So enriched basis T, has 66 modes for case 1
and 95 for case 2 (with or without S,). The figure 5 shows the limitation

of classic decoupled bases even if they have been enriched by p*: errors are
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large, even when the number of modes in T is increased to 100 and the static
mode is included in the basis. In the whole paper, results are presented in
dB using a reference level of 107125.1., and the reference solution is obtained

by solving the full FE model with the direct method.

Figures 6 and 7 illustrate the efficiency of the proposed basis in which
decoupled fluid basis is enriched using residual vectors with or without ab-
sorbing area S,: the error levels are much lower than with the classical

uncoupled bases.

4. Robust dynamic reduction method

4.1. Formulation

In this section, the investigations are only related to the parametric ap-
proach of uncertainties. In the following, fonts with double lines will be
used for random variables (i.e. M will be used to describe the random vari-
able associated to M). The FE deterministic model has been defined above
(equations 5-7) and it can be written in compact form (8):

(K — w?M + ‘7Z—WA]Y - F (46)

where Y7 = [UT P?] is the deterministic response vector. In order to val-
idate the method, we consider that uncertain parameters are only those of
characteristics of acoustic absorbing material and viscoelastic elements, so

there is no uncertainty in matrices Ky, My, C' and Ay.
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Figure 5: Indicators of classical uncoupledQI%asis, cavity without S,. (a): sound power

level, (b): mean of quadratic velocity



Figure 6: Indicators of proposed method, cixéity without S,. (a): sound power level, (b):

mean of quadratic velocity



Figure 7: Indicators of proposed method, §%vity with S,. (a): sound power level, (b):

mean of quadratic velocity



Let 6 be a random variable (vector or scalar), the stochastic FE model func-

tion of @ is:
[Ks — w?M,] U+ CP = F, (47)
Ky —w?M; + ‘%"Af P+ p;w?CTU = 0. (48)
Or, in compact form:
[K — w?M + %"A]Y =F (49)

By setting H = [K — w?M + %A] one has:
Or—Y=FfO)=H'F (50)
The random variable 6 can be represented as:
0 = 0y + NG, (51)

where 6, is the nominal value of 6§ and A# is the fluctuation around 6. If 0

is Gaussian one can map:
0 =0 (1 + 646), (52)

where 0y represents the dispersion level, and £ is a central Gaussian variable.
Thereby a random matrix, for example K, function of # can be expressed
as:

Ks(0) = K, + AK(0), (53)

in which K = K(6p) is its nominal value, AK,(6) is considered as a random

modification around K. Consequently, equations (47) and (48), for a set of
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parameters described by variables 6, can be written as:

[Ks + AK(0) — w?(M, + AML,(6))] U(0)
+CP(§) = F,, (54)

]Q—w%@+§;5éﬂaAfP@
+p?CTUWH) =0, (55)

where AK;(0) = AK(0) + A [G(0)K,,(0)] for viscoelastic damping. The

term corresponding to acoustic absorbing material can be rewritten as:

I S
Zo+ NZ(0) T T 2,

in which a(f) is a random scalar - also function of Z, and AZ,(#). Equa-

Af + a(H)Af, (56)

tions (54)-(56) show that the random model has random perturbation terms
around deterministic model.
Using the robust reduction bases T, and Ty, leads to robust reduced model
of (49):

R — oM + %"m _F. (57)
Problem now resides in the construction of robust bases T, and Ty.. Dur-
ing Monte Carlo simulation, for any one sample of 6, solving new eigenvalue
problems and calculating residual vectors are theoretically required to find
them, as indicated by equations (32), (36) and (37), which is time expensive.
In order to avoid this kind of reactualization, an alternative approximate
method is the robust basis [23, 26], based on the deterministic model whose
reduction basis are Ty = [Ty ATy and Ty = [Ty ATys ATy,). These deter-

ministic bases will be enriched by the response vectors of deterministic model

to the forces corresponding to random modifications. For the structure, the
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static responses to these forces are considered [23, 11] (respectively mass,
elastic and viscoelastic stiffness):
AT = [R(K (we))] ™ AM,(8) Ty,
AT = (R (we))] ™ AR (6) T, (58)
AT = [R(K(we)] ™ AK,, () Tio.
The deterministic basis T} is then enriched by the mean structural modifica-

tion random vectors AT, :
AT, = E ([ATY* AT ATS]), (59)

where E/(.) is the first statistical moment. The robust basis T is thus:

T, = [Ts AP]I‘Sl]- (60)

For the fluid domain, the random force due to structural one is represented

by the term AT, : its residual response is approached as follows:
ATy, = (K — w?M;) ™ CTAT,,. (61)

The random modifications forces associated to absorbing area is [jwa(6)AP(6)]
which is approximated by [jwa(0)A;Trq’(0)]. Because a(f) is a scalar, the
residual response of this force is always estimated by the term ATy, of the
deterministic basis T..

Finally the robust fluid basis can be established:
Tfe = [Tye ATy (62)

One can then orthogonalize the basis and find the dominant directions of the
subspaces T, and T, by using singular values decompositions [23]. This is of
particular interest if a large number of vectors has to be added to the initial

basis.
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4.2. Sitmulations

A simplified exhaust line composed by two aluminum tubes, and sup-
ported at ends is considered (figure 8). The geometric characteristics of the
tube with small diameter are: radius R; = 0.1m, length L; = 0.4m. Those
of large diameter are: Ry = 0.25m, Ly = 1m. Two ends are closed by rigid
walls on which poro-elastic elements are sticked. The tube of large diameter
is treated by viscoelastic patches at its extremities on the circumference, like
shown in figure 8. Other geometries and material characteristics are given in
section 3.5. The frequency band of interest [100; 350]H z is divided into 800
points, and a single value in the middle of the band w. = w; = 225 x 27 is used

when required. A point force is exciting the system in the diameter direction.

Figure 8: Simplified exhaust line treated by viscoelastic and poro-elastic elements (modeled

with ANSYS)

Full FE model has 12899 DOFs (5784 structural DOFs and 7115 fluid
DOFs), corresponding to at least 6 elements per wavelength at 350 Hz.
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Craig-Bampton method cuts the line in two parts: main part (tube with
large diameter and connecting plate) and secondary one (tube with small di-
ameter). Structural nominal basis T of main part contains 194 modes (144
static modes which correspond to 144 junction DOFs and 50 normal modes)
enriched by 51 modes residual modes associated to viscoelastic forces. The
one of secondary part contains 153 modes (144 static modes and 9 normal
modes). For the fluid domain, the enriched basis contains 51 acoustic modes
and 119 enriched modes in which 106 of AT}, and 13 of AT}, . Thus, the final
deterministic reduced model has 373 DOFs including 203 structural DOF's
and 170 fluid DOFs. This corresponds to a reduction ratio of 97%. The
acoustic impedance Z,(w) = Zr(w) + jZ;(w) has been obtained by fitting
the experimental curves:
ZMw) = Z8+ ZEf + 2R+ 20 w=2nf,
Z{ (63)

Zf(w):7+Zg+zgf+zif2+zgf3.

The nominal values of coefficients (using international system units with f
in hertz) are: Zf' = 788; Zf = —1.32; ZI' = 1.31 x 1073; Zf = —4,01 x
1077 Z1 = —694 x 10%; ZI = —2640; Z! = 5.49; ZI = —4.44 x 1073;
ZE = 1,24 x 1075, All coefficients are considered as random variables of
normal distribution with dispersion coefficient of 2% (case 1) and 4% (case
2), respectively corresponding to about 6% and 10% of dispersion on Z and
Z!. For the structural part, the chosen random variables are temperature 7,

thicknesses hy, he and hg of the viscoelastic treatment:

e h;: Gamma distribution, h; = 3 x 10™®m, o, = 0.01h; (case 1),

on, = 0.02h; (case 2);
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e hy: Gamma distribution, hy = 2.54 x 107°m, oy, = 0.05hy (case 1),
on, = 0.1hy (case 2);

e hy: Gamma distribution, hy = 5 x 107*m, o,, = 0.05h3 (case 1),

ons = 0.1h3 (case 2);

e T: Normal distribution, 7" = (273 + 20)K, or = 0.017 (case 1) and
or = 0.027 (case 2).

This paper being oriented on damping devices design, only uncertainties
related to poro- and visco-elastic materials are considered. Nevertheless any
parameter uncertainty that can be addressed through the element or material
parameters of the FE model can be considered. The uncertainties that can
not be considered with the proposed approach are those related to mesh
changes (i.e. change of cavity size or plate width and length) and modeling
uncertainties (i.e. errors in the model itself). As far as the poroelastic layer is
concerned, it is clear that the uncertainty distribution on fitting parameters
are not easy to use in a practical application, since they are not directly
linked to physical properties. An extension of this work could be to consider
non-parametric uncertainties for the porous layer, coupled to a parametric
description of physical variables for other parameters.

Figures 9-10 show the extreme statistics of sound power level P; and mean
of quadratic normal velocity of structure V.2 with 1000 Monte Carlo simu-
lation (MCS) samples, the solid lines correspond to extreme statistics and
mean values, the dashed ones correspond to nominal model. Case 1 is related
to low dispersion and case 2 corresponds to medium dispersion. In term of

calculation time, the proposed method requires 1280 seconds for the con-
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Figure 9: Acoustic indexes spectrums. Uncertainty levels: case 1. 1000 samples. Solid

line = mean value; Dashed line = nominal value; Grey area = min-max bounds
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Figure 10: Acoustic indexes spectrums. Uncertainty levels: case 2. 1000 samples. Solid

line = mean value; Dashed line = nominal value; Grey area = min-max bounds
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struction of nominal projection bases, and then each sample consumes 600
secs (processor Pentium IV 3.2GH z, RAM 1Gb). For N=1000 samples, this
represents a CPU reduction ratio of 99,5% when using the direct CMS on
the full model. In order to validate the statistics given by the reduced model,
the full stochastic FE model should be solved without reduction, which obvi-
ously requires weeks of calculations, so a complete validation of the statistics
given by the reduced model is not easy to perform. An evaluation on a lim-
ited frequency band is nevertheless proposed as reference using 1000 samples
requiring each 65 direct calculations between 281.2 and 301.5 Hz. The fig-
ure 11 exhibits the results of this validation by comparing the statistics of
full stochastic approach and proposed robust CMS method. One can clearly
observe that, on this limited frequency range, the proposed method can effi-
ciently estimate minimum, maximum and mean values of the indicators: the
results are very close to those obtained by the full stochastic method. One

can expect the same efficiency on the whole frequency range of interest.

5. Concluding remarks

In this study, a component modes synthesis method for damped vibroa-
coustic problems which is efficient and easy to implement has been proposed,
in order to predict the structural modifications induced by the viscoelastic
and poro-elastic materials used as design solution for vibration and noise
reduction. The convergence is greatly improved and the efficiency of the pro-
posed Ritz bases is compared to performances of classical uncoupled bases
using in vacuo structural modes and undamped rigid wall cavity modes,

which are commonly used to perform a modal reduction. On the other hand,
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Figure 11: Comparison of acoustic indexes spectrums: mean value and min-max bounds.
Uncertainty levels: case 1. 1000 samples. Legends: — full stochastic model; * proposed

robust CMS.
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robust bases have been constructed to solve the problem of uncertainties
propagation. Furthermore, it is shown that the proposed robust bases re-
sult in significant time reduction compared to direct resolution with the full
model.

This robust basis is easily extended to Craig-Bampton CMS method and
can greatly reduce the required time on substructured acoustic models. This
facilitates the inclusion of these models into large scales automated optimiza-
tion schemes for robust design.

The poro-elastic material was modeled by an absorbing surface characterized
by its acoustic impedance Z,(w) depending on frequency. In order to well
understand the coupling phenomena between structure and acoustic domain
and also to represent all effects, the next step will be to explicitly model the

poro-elastic media and build appropriate reduction bases.
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