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Abstract. The present paper deals with the analysis of the dynamic behavior of viscoelastic sandwich 
structures with localized nonlinearities. The Golla-Hughes Mac Tavish (GHM) viscoelastic model is used and 
the finite elements procedure is established to derive both linear and non-linear equations of motion. This 
model increase the order of the differential equations of motion through the addition of dissipative coordinates, 
which complicate further the numerical resolution with the addition of local nonlinearities in the junctions of 
the assembled structures. Hence, a reduced-order model is proposed to enhance the control of the dynamic 
behavior of such structures incorporating viscoelastic materials especially for structures with large finite 
element model.  

1 Introduction  
The use of composite structures notably sandwich 
structures [1] has been regarded as a convenient strategy 
for many industries such as aeronautics, marines and 
automobiles. In fact, these structures present a high way 
of vibration control in term of light weight and high 
specific stiffness especially when they incorporated 
viscoelastic materials. Hence, when the sandwich 
structure is made by a viscoelastic material a consistent 
model should be considered to take account the damping 
effect. One of the most efficient models is the Golla-
Hughes Mac Tavish (GHM) model [2, 3] is used to 
describe such behavior. In fact, this model is based on the 
introduction of dissipative coordinates which allows a 
correct time domain representation of the frequency 
dependence of the viscoelastic materials.  

First, this model is used and the finite elements 
procedure is carried out to derive the linear equations of 
motion. Unfortunately, the obtained linear model is 
unable to describe the really behavior of the assembled 
sandwich structure through bolts or rivets. Thereby, the 
inclusion of local nonlinearities in the junctions of the 
assembled structures is required. In the second step, the 
(GHM) model is adapted to derive the non-linear 
equations of motion. However, the addition of dissipative 
coordinates increase in one hand the size of the obtained 
equations of motion and the inclusion of local 
nonlinearities complicates in second hand the numerical 
scheme of resolution. Consequently, a reduction method 
is proposed to reduce the order of the differential non- 

linear equations of motion and also to reduce drastically 
the computational cost. 

A numerical application of a viscoelastic sandwich 
beam is illustrated to highlight the effect of local 
nonlinearities on the dynamic behavior of the sandwich 
assembled structures and to illustrate the performance the 
proposed reduction method in term of accuracy and CPU 
time. 

2 Viscoelastic Model  
Viscoelasticity is a dual complicated behavior which 
depends on the frequency. So, it should be modeling 
accurately. Several models are presented in the literature 
[4, 5] but the majority of them are fairly straight forward 
to describe the really characteristics of the viscoelastic 
materials. One effective and useful model is the (GHM) 
viscoelastic model which expresses the shear modulus in 
the Laplace domain, as a sum of mini-oscillators as given 
as follows: 
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 Where: 0G  represents the static modulus, ( iα , iζ , iω ) 
are the parameters of each used minioscillator which are 
determined experimentally by the curve fitting of the 
viscoelastic materials [6], GN is the number of used 
mini-oscillators and s is the Laplace variable. 
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Additional variables are introduced to the model as: 
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With iz represents the ith dissipative (generalized) 
coordinates and q are the structural (physical) 
coordinates. 
 
3 Equations of motion 
 
Consider the finite element equation of motion of a 
sandwich structure composed by three layers and 
containing N degree of freedom (Dofs): 

M!" #$ !!q{ }+ D!" #$ !q{ }+ K!" #$ q{ }= F{ }  (3) 

 
3.1 Linear (GHM) equations of motion 
 
The introduction of the (GHM) model into sandwich 
structure leads to the temporal linear equation of motion: 

MG
!" #$ !!qG{ }+ DG!" #$ !qG{ } KG!" #$ qG{ }= FG{ }  (4) 

[ ]GM ,[ ]GD , [ ] G Gn n
GK R ×∈ with (1 )n N NG G= +

are respectively the global (GHM) mass, damping and 
stiffness matrices which are expressed as: 
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are 

respectively the static (or low frequency) and the 
dynamic (or high frequency) stiffness matrices 
corresponding to the elastic and viscoelastic layers. 
However, this linear equation of motion is unable to 
describe the dynamic behavior of the assembled 
sandwich structures through bolts or rivets. The bolted 
joints are usually modelled by non-linear elements. 
Hence, the local nonlinearities are introduced in the linear 
model to take into account the effect of bolted joints. 

3.2 Non-linear (GHM) equations of motion 
 
The temporal (GHM) non-linear equation of motion is 
written: 

MG
!" #$ !!qG{ }+ DG!" #$ !qG{ }+ KG!" #$ qG{ }
+ fnl qG( ){ }= FG{ }

 

 
(6) 

Where fnl qG( ){ }  
represents the Duffing oscillator 

which its expression is given by the following form: 

( ){ } ( ){ } [ ] ( ){ }3
nl= = Kµnl G G Gf q q t q t    (7) 

µ is the non-linear stiffness factor and [ ]nlK is the non-
linear stiffness matrix contribution.  
The addition of dissipative coordinates leads to 
augmented systems which need to be reduced. For the 
linear case, this goal is achieved in our previous work [7]. 
For the non-linear assembled structures, this goal is twice 
reinforced firstly by the high order of the global system 
induced by viscoelastic model and secondly by the local 
nonlinearities which lead to time-consuming resolution 
scheme. Therefore, the use of reduction technique in the 
substructuring context for viscoelastic sandwich 
structures is an alternative to represent the dynamic 
behavior of such structures with low computations time. 
 
4 Reduction of the non-linear 
viscoelastic sandwich structures 
 
In this paper, we propose a strategy based on the 
combination between the substructuring procedure [8] 
and Guyan reduction method [9] for local non-linear 
viscoelastic structures. Thus, the obtained temporal non-
linear reduced model of the order n<<nG is given as: 

Mc
!" #$ !!qc{ }+ Dc!" #$ !qc{ }+ Kc!" #$ qc{ }
+ Knlc!" #$ qc{ }= Fc{ }

 

 
(8) 

The reduced matrices are expressed in the following 
forms: 
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{ } [ ] { }T
c Gn GF T F=                                                     (9) 

The form of the proposed condensed basis [ ]GnT  
is: 
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Where: [ ]
1

1
ii ij
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[ ]1I , [ ]2I  
: the identity matrices with appropriate sizes. 

The subscript i and j indicates respectively the interior 
(slave) and the junction (master) Dofs. 
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Furthermore, the purely structural and the coupled 
dissipative-structural stiffness matrices are given as 
follows: 
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This method enables to reduce drastically the full Dofs 
and to minimise the computational cost without 
significant loss of the accuracy for the dynamic 
prediction of the full system. 
 
5 Numerical results 
 
The proposed method is illustrated on a viscoelastic 
sandwich beam that is composed by two substructures 
SS1 and SS2 assembled in the junction by Duffing non-
linear springs. The finite element model involves 40 
elements through the length and 2 elements through the 
width, with 320 nodes and 5 dofs per node leading to a 
full finite element model of 3200 dofs. (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Finite element model of the viscoelastic sandwich beam 
 
The global sandwich beam has 0.5 m of length and 
0.038m of width. It is constituted by two elastic faces 
made of Aluminium with shear modulus: 
G! = 70.3  x10!  N/m!; Poisson ratio: 𝜈 = 0.3; 
density:  𝜌! = 7800  𝑘𝑔/𝑚!;thickness1: 𝑒!! = 4.5  𝑚𝑚; 
thickness2: 𝑒!! = 0.5  𝑚𝑚 and a viscoelastic core 
commercially available 242F01 3MTM used at 25o C using 
the (GHM) shear modulus (Eq.1) with Poisson 
ratio  𝜈! = 0.5; density: 𝜌! = 1099.5  𝑘𝑔/𝑚! and 
thickness: 𝑒! = 0.2  𝑚𝑚. 
 
Table1. Parameters of the GHM viscoelastic model identified 
for material 242F01 3MTM – case of one mini-oscillator 
 
Minioscillator (i=1) Value 

αi  
1.047 

ζ i   3911.89 

ωi rad / s!" #$  4943.06 

G0 MPa!" #$  0.079 

 
The global viscoelastic sandwich beam with localized 
nonlinearities is submitted to harmonic load at the point 
A with a frequency near the first eigenmode f=25Hz. The 
stiffness coefficient of each local nonlinearity is

9 3
10 /N mµ = . The obtained temporal responses of full 

and reduced nonlinear models are compared. In fact, this 

comparison is performed through temporal prediction 
indicators [10] which are given as follows: 
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The obtained results for the viscoelastic sandwich beam 
in terms of displacement and velocity in the cases where 
f<fc and f>fc (fc= 300 Hz is the cuttoff frequency which 
is the smallest eigenfrequency of the slave or interior 
eigenvalue problem [9]) are illustrated by Figures 2 and 
3. Besides, fc defines the validity domain of the Guyan 
reduction method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Displacement responses of the full and reduced models of 
the global viscoelastic sandwich beam where (a): f<fc and (b) 
f>fc plotted in the point A. fc= 300Hz 
 
Table 2. Temporal moments of displacement responses of the 
viscoelastic sandwich beam Full model /Reduced model (f<fc) 
 

 E T D 
Full model  
(3200 dofs) 

0.0027 1.4983 0.7523 

Reduced model 
(1630 dofs) 

0.0027 1.4983 0.7523 

 
Table 3. Temporal moments of displacement responses of the 
viscoelastic sandwich beam Full model / Reduced model (f>fc) 
 

 E T D 
Full model  
(3200 dofs) 

0.0031 1.5005 0.7505 

Reduced model 
(1630 dofs) 

0.0032 1.5028 0.7483 
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Fig.3. Velocity responses of the full and reduced models of the 
global viscoelastic sandwich beam where (a): f<fc and (b) f>fc 
plotted in the point A. fc= 300Hz 
 
Table4. Temporal moments of velocity responses of the global 
viscoelastic sandwich beam Full/reduced model (f<fc) 

 E T D 
Full model  
(3200 dofs) 

91.4009 1.4804 0.7690 

Reduced model 
(1630 dofs) 

91.4009 1.4804 0.7690 

 
Table5. Temporal moments of velocity responses of the global 
viscoelastic sandwich beam Full/Reduced model (f>fc) 

 E T D 
Full model  
(3200 dofs) 

163.8803 1.5010 0.7488 

Reduced model 
(1630 dofs) 

171.4454 1.5047 0.7483 

 
 The performance of the proposed method in term of 
(CPU) time is illustrated by a reduction ratio of 90% 
compared to the 100 % full model. 
As can be seen through the Figures 2(a) and 3(a), the full 
and the reduced models are well bonded in the time 
interval [2-2.25]s when the steady state motion is 
established for a frequency excitation less than the cuttoff 
frequency of the global structure (fc=300Hz). This visual 
connotation is affirmed by the values of the three central 
moments (E, T, and D) which are identical as shown in 
Table2 and 4. This leads to conclude that the proposed 
reduction method has the capacity to reproduce the 
behaviour of the full nonlinear model with good 
accuracy.  
Figures 2(b) and 3(b) show a shift in amplitude and time 
scales between the full and the condensed nonlinear 
models in the case where the frequency excitation is high 
than the cuttoff frequency. These differences are 
indicated by a relative error of 3% for E, 0.15% for T and 
0.002% for D (displacement responses, Table3) and this 

error is 5% for E, 0.24% for T and 0.06 % for D (velocity 
responses, Table5). Furthermore, the comparison of the 
(CPU) time of the full and reduced models shows a 
reduction ratio of 90% for the proposed example.  
 
5 Conclusions 
 
In this paper, we have proposed a reduction method well 
adapted to the dynamic analysis of nonlinear viscoelastic 
sandwich structures in time domain; this method 
combines the (GHM) approach and the substructuring 
procedure. Both linear and non-linear equations of 
motion are derived and resolved. A comparative study 
between the full and reduced models is achieved through 
temporal static tools and through the (CPU) time 
calculations. This comparison shows the importance of 
inclusion of local nonlinearities at levels of junctions 
between substructures with regard to the potential 
dynamic calculation of the complex mechanical 
structures. Furthermore, the significant reduction ratio 
enhances the performance of the proposed method 
especially in the pre-projects stage as a simple and 
powerful tool of passive control of non-linear vibrations. 
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