
Optimal Energy Consumption and Throughput
for Workflow Applications on Distributed

Architectures

Abdallah Ben Othman, Jean-Marc Nicod, Laurent Philippe
and Veronika Rehn-Sonigo

FEMTO-ST institute CNRS / UFC / ENSMM / UTBM, Besançon, France
[Abdallah.BenOthman, Jean-Marc.Nicod, Laurent.Philippe, Veronika.Sonigo]@femto-st.fr

March 10, 2014

Abstract
In this article we study both the throughput and the energy optimiza-

tion problem for a distributed system subject to failures that executes a
workflow at different speed levels. The application is modeled as a directed
acyclic graph composed of typed tasks linked by dependency constraints.
A continuous flow, or a great number of application instances, has to be
processed. Optimizing the collaborative system performance implies to
increase the throughput – the number of application instances processed
by time unit – or to decrease the period – the time needed to output one
instance of the system. The system is designed as a collaborative plat-
form of distributed machines. Each machine collaborates with others by
performing all the instances of at least one task of the DAG. The problem
we tackle is to optimize the configuration of the platform. In this paper
we propose two polynomial algorithms that optimize the two objectives
of period (i.e., throughput) minimization and energy minimization. We
prove that the proposed algorithms give optimal results. Our optimization
approach is hierarchic in that we either minimize the energy consumption
for the optimal period or minimize the period for the optimal energy con-
sumption. Moreover a minor modification of our algorithms allows to
compute the Pareto front between the two optimal solutions.

Keywords
Scheduling; workflow applications; energy minimization; fault tolerance; through-

put maximization; polynomial complexity

1 Introduction
In this paper we focus on workflow applications described as Directed Acyclic
Graphs (DAGs). An application is mapped on a set of distributed machines
and a flow of instances has to be processed. This is the case of systems that
continuously input raw data to which several processing stages or tasks must be
applied to obtain a final result [1]. Another example are configurable production
systems [2, 3]. The system is designed as a collaborative platform of distributed

1

machines. Each machine collaborates with others by performing all the instances
of at least one task of the DAG. Illustrations of these contexts are a flow of
images generated by a camera that must be processed in several stages or a
production flow with several succeeding tasks. The considered tasks are of
different types that represent the different processing procedures (e.g., filters,
analysis, assembly and so on). When the data processing in the application is
substantial, several computers or production cells must be used to be able to
process the entire input flow and the problem of scheduling the tasks on the
resources becomes complex due to the heterogeneity of the processing times on
the resources [4]. The complexity of the problem may be lowered by considering
that each machine only executes one task type thus avoiding costly context
changes and cases where a machine executes parts of several tasks [5]. Then the
initial problem becomes a mapping problem where task types must be mapped
onto machines and the objective function is to find the best possible throughput,
i.e., to maximize the number of instances processed per time unit [6]. Note
that the objective function used in this paper is the period minimization –
the time between two consecutive outputs. The period is the inverse of the
throughput, which amounts to the same but is more widely used in workflow
system optimization.

This paper adresses the problem of using a dedicated system that continu-
ously executes the same DAG of tasks onto different instances with transient
failures that sometimes destroy one instance. In this context the objective is to
provide the lowest period for the system output. Application flow execution as
image processing may be very energy consuming for large images. In the work-
flow all execution steps however do not have the same execution cost. Lowering
the execution speed of the less loaded resources can substantially reduce the
global energy consumption. We thus propose two polynomial algorithms based
on a greedy approach that either reach the objective of period minimization for
a fixed energy consumption or reach the objective of energy minimization for a
fixed period. Furthermore we prove the optimality of both the two approaches.
For cases where one of the constraints is not compliant with the optimal solu-
tion, we propose an adaptation of our algorithms that provides the Pareto front
which links the two optimal solutions – the lowest energy consumption with an
optimal period and the lowest period with the optimal energy consumption.

The paper is organized as follows: Section 2 discusses related work. In
Section 3 we give a formal definition of the problem. In Section 4 we present
and prove several lemmas that are used in Section 5 to define the proposed
algorithms. Then, in Section 6, we present the result of the algorithm imple-
mentation, in the shape of a Pareto front, for cases where the constraints do not
allow to reach the optimal solutions. We conclude the article in Section 7.

2 Related Work
Nowadays more and more attention is payed to energy consumption for finan-
cial and environmental reasons. This tendency has also reached the distributed
computing domain [7, 8, 9]. In the case of flow applications where the global
throughput is directed by the lower throughput of the graph, it is not always
necessary that all machines run at maximum speed [10]. Several papers define
an energy model based on power consumption modes where the processing ca-

2

pabilities depend on the supplied voltage [11, 12]. Then voltage scaling is used
to slow down some of the machines – and as a consequence energy spared –
without affecting the global throughput [13]. It is thus worth to find the lowest
possible speed for each machine for a given throughput or, on the opposite, the
best reachable throughput for a given energy consumption.

On the other hand in distributed environments such as GRIDs or micro-
factories, the risk of task failures cannot be ignored, in particular for long run-
ning and communication intensive applications like flow applications. The fail-
ures may append for numerous reasons such as network or computing errors,
network contention, task complexity and so on. Numerous works on reliability
and energy focus on the problem of Dynamic Voltage and Frequency Scaling
(DVFS) which leads to more errors when the frequency is scaled down [14].
This assumption however only lays on the assumption that with low voltage
the processor becomes more likely to be pone to errors. Defining a global error
model for an entire distributed system however is not so simple as these systems
are composed of so many elements, each with their own failure model. For in-
stance, [15] uses a model where the reliability of the processor is directly related
to the number and span of speed changes. Increasing the speed of computations
or/and the processing load can also lead to less reliable systems as it is shown on
real HPC in-production systems [16], or to DRAM errors [17]. [18], analyzing
a large database of failure in PC systems, suggests that “one can minimize the
likelihood of failure over a given time period by operating at the slowest CPU
speed sufficient to achieve desired performance”. Based on this observation, we
assume in this paper that optimizing the energy consumption of the system
by decreasing its speed leads to decrease the fault rate in addition to period
minimization. In this context we propose two algorithms that minimize either
the energy consumption for an optimal period or find the lowest period for a
minimal energy consumption. Note that the antagonism between reliability and
machine speed induces the complexity of the problem and, in particular, the
properties set in section 4.

3 Framework
In this section we formally define the application, platform and energy models
and our optimization objective.

3.1 Application Model
We consider a workflow application that is running during infinite or long time.
The application is modeled as a directed acyclic graph (DAG) G(T,D), with
T = {T1, . . . , Tn} the tasks of the application and D ⊂ T × T the dependencies
between the tasks (see Figure 1). Data sets enter the graph at the source task
and traverse the graph from one task to another before producing a final result
at the sink task. A weight wi is associated to each task Ti that corresponds to
the amount of work to be done to perform the task.

3

Figure 1: Illustrating task graph

3.2 Platform and Execution Model
The platform is modeled as a set M = {M1, . . . ,Mp} of p machines fully inter-
connected. Each machine has input and output communication buffers to store
temporary data. We assume that the communication times are shorter than the
computation times so that, thanks to the data buffering, the former are covered
by computations and thus can be neglected.

The tasks are statically allocated to machines according to an allocation
function a such that a(i) = u, i.e., all data instances that enter task Ti are
performed by machine Mu. Note that in this work we assume that the map-
ping is already defined thanks to mapping algorithms as defined in [6] and we
concentrate on period and energy optimization of a given mapping.

A machine Mu runs at different speed levels lu (lu ∈ {0, 1, 2, . . . ,max(lu)})
with an associated slow down factor αluu ∈ [1,+∞). Note that Mu runs at its
highest speed, noted su, for level lu = 0. The system configuration L is given by
vector L = (l1, l2, . . . , lu, . . . , lp) that describes the speed level of each machine.

Tasks are subject to transient failures. In case of failure, the current data is
lost and the task starts to process the next data. The failure rate is defined for
each task as the percentage of failures. For a task Ti, allocated to machine Mu,
we assume that the failure rate f lui depends on the task and on the machine
speed level lu. We also assume that the failure rate increases with the machine
speed: f lui < f

l′u
i with lu > l′u. It comes that if machine Mu performs xlui input

data sets with task Ti, it outputs (1−f lui)xlui data sets due to failures. Consider-
ing L, the configuration of the platform, it is possible to compute xlui backwards
for each data output of the application. If task Ti has only one outgoing edge

(Ti, Tj) within the DAG, xlui =
xlu
j

1−f lu
i

(see Figure 2 for an example). If the task

Ti has several outgoing edges (Ti, Tj) within the DAG, xlui =
∑

(Ti,Tj)∈D
xlu
j

1−f lu
i

.

Thus xlui is the average number of data sets that machine Mu has to perform
with task Ti so as to output at least one result data set out of the system.

3.3 Example of the Platform and Execution Model
To clarify the above stated platform and execution model, we consider the ap-
plication given in Figure 2. To keep the example simple, we suppose that task
Ti is mapped onto machine Mu with i = u and that each machine runs at is
lowest speed level. Hence task T1 is mapped onto machine M1 which is running
at a level l1. The failure rate of task T1 accordingly depends on l1 and we have
f l11 = 1/6. The same holds for the other tasks.

4

Figure 2: Example for the backward computation of the necessary amount of
data sets for each task in a linear application, taking into account the failure
rates.

Figure 3: The acceleration of machine M2 implies a higher number of input
data sets at the application entry.

We suppose to have the failure rates indicated in Figure 2. We can now
compute the necessary amount of data sets that each task needs as input to be
able to produce at least one result out of the system (xout = 1). As indicated
earlier, the computation is done backwards and we get xl44 = 1

1−f l4
4

xout = 1.5.

We now suppose that machine M2 has two possible speed levels l2 and l′2,
where l′2 is the accelerated level (l′2 < l2). The associated failure rate for level
l′2 is f l

′
2

2 = 2/5. If machine M2 switches to level l′2, the x
lu
i values have to be

recomputed in consequence and you can see the new configuration in Figure 3.

3.4 Throughput/Period Model
We define the platform throughput as the number of data outputs per time
unit. We define the period of the platform as the inverse of the throughput: the
period defines the maximum duration between the output of two consecutive
data outputs. As we already know both the number of tasks that have to be
performed to output at least one data set and the mapping of tasks to machines,
we can compute the period of each machine of the platform. The task period
plui is the time to perform xlui instances of each task Ti mapped onto machine
Mu: plui = xlui ×

wi×αlu
u

su
. Then the machine period pluu on Mu is:

pluu =
∑

Ti|a(i)=u

plui =
∑

Ti|a(i)=u

xlui ×
wi × αluu

su

The application period on the platform is the longest period over all machines
in configuration L:

P (L) = max
Mu∈M

(pluu)

We define the critical machine Mc as the machine with the longest period that
determines the application period, i.e., P (L) = plcc . We denote Mc(L) one
critical machine of the configuration L.

5

3.5 Energy Model
The energy consumption E(L) of the platform in configuration L is the sum
of the energy consumption EL(u) of each machine Mu that performs at least
one task of the graph. The energy EL(u) = ELstat(u) + ELdyn(u) is the sum of
ELstat(u), the static part of energy consumed when machine Mu is in service,
and ELdyn(u), the dynamic part of energy consumed when the machine performs
its tasks [9].

ELstat(u) only depends on the duration of the platform usage. The static
energy needed to output one data out of the system is thus ELstat(u) = εu×P (L)
where εu is the static energy consumption per time unit, P (L) is the period of
the application (or the duration between two consecutive outputs) and L is the
configuration of the system.

On the other hand, the dynamic part of the energy depends on the machine
speed when it performs tasks. Several models are defined in the literature for
the dynamic energy consumption of a machine. It is usually represented by a
polynomial of at least second degree as in [19, 20] or a more general strictly
convex and increasing function g of the machine speed as in [11] and [15]. As
in [20] we assume here that the energy consumed on machine Mu at speed s
depends on Cen × sβu where βu > 1 and Cen > 0. As the speed of machine Mu

is su
αlu

u
the dynamic energy consumed during one period by machine Mu is the

sum of the energy consumed to perform all the tasks needed for that period is
given by equation 1.

ELdyn(u) =
∑

Ti|u=a(i)

(
Cen ×

(
su

αluu

)βu

× plui
)

(1)

3.6 Optimization Objectives
In this paper, we are interested in two objectives. First, we aim at minimizing
the period and minimizing the energy consumption for the optimal period. Sec-
ond, we optimize the energy consumption of our platform while minimizing the
period for the optimal energy consumption.

4 System Properties
In this section we state some important properties for the changing of the system
configuration L and we first exhibit the relation between two system configu-
rations L and L′. The period of a machine Mu in system configuration L′ can
be expressed through the task periods in system configuration L. Based on
the platform model, we know that a machine period is the sum of all its task
periods, and we can deduce the following relation:

p
l′u
u =

∑
Ti|a(i)=u

x
l′u
i ×

wiα
l′u
u

su
=

∑
Ti|a(i)=u

x
l′u
i α

l′u
u

xlui α
lu
u

× plui (2)

We now consider the influence of slowing down or accelerating machines.

Lemma 1. When a group of machines is accelerated, the amount of work to
output one data set increases.

6

Proof. Let L and L′ be two system configurations with l′u 6 lu for each machine
Mu ∈M , i.e., L′ has some accelerated machines in comparison to configuration
L. We aim at proving that ∀Ti ∈ T, xlui 6 x

l′u
i with a(i) = u. That means the

amount of input data sets for task Ti is more important in configuration L′.
Let Mu ∈ M be an accelerated machine whose configuration is set to l′u.

As l′u < lu, by definition of our model, f lui < f
l′u
i for all tasks Ti ∈ T with

a(i) = u and so
1

1− f lui
<

1

1− f l
′
u
i

. From the definition of the computation of

xlui , the previous expression implies that the value of xl
′
u
i increases onMu. More-

over since these values are computed backwards (Cf. Figure 2 in Section 3.3),
this incrementation recursively modifies the xlvj by backwards following the de-
pendency constraints in the group of machines. The global workload of each
machine Mv, where a(j) = v, thus increases.

Lemma 2. When a group of machines is accelerated, it cannot decrease the
period of the other machines.

Proof. Let L and L′ be two system configurations with l′v 6 lv,∀Mv ∈ M , i.e.,
L′ has some accelerated machines compared to L. Let Mu be a machine with
lu = l′u. We aim at proving that pluu 6 p

l′u
u .

First, with Lemma 1, we know that for all tasks the amount of work is more
important in L′ than in L: xlui 6 x

l′u
i ,∀ti ∈ T . Next, we know that if lu = l′u,

the acceleration coefficient α is also the same: αluu = α
l′u
u . Hence we have:

∀ti ∈ T s.t. u = a(i) : αluu x
lu
i 6 α

l′u
u x

l′u
i

and we get:

∀ti ∈ T s.t. u = a(i) : plui 6
α
l′u
u x

lu
i

αluu x
lu
i

× plui

This holds true for all task periods and we can deduce the machine period by
summing up over all task periods of a machine Mu and with Eq. 2, we prove
that the machine period of Mu is smaller in configuration L than in L′:

pluu =
∑

Ti∈T |a(i)=u

plui 6
∑

Ti∈T |a(i)=u

α
l′u
u x

l′u
i

αluu x
lu
i

× plui = p
l′u
u

Corollary 1. The acceleration of another machine than the critical machine
cannot decrease the application period.

Proof. Let L and L′ be two system configurations with l′v 6 lv,∀Mv ∈ M , i.e.,
L′ has some accelerated machines. Let Mc be the critical machine such that
plcc = P (L) and lc = l′c. With Lemma 2, we know that the machine period of
machine Mc is lower (or equal) in L than in L′: plcc 6 p

l′c
c . By definition, we

deduce that the period of configuration L is lower than the maximum period in
L′:

P (L) 6 p
l′c
c = max

Mu∈M
(p
l′u
u) = P (L′)

7

Lemma 3. The acceleration of a machine cannot decrease the dynamic energy
of any machine.

Proof. Let L and L′ be two system configurations with l′u 6 lu,∀Mu ∈M , i.e.,
L′ has some accelerated machines. We aim at proving that for all machines the
dynamic energy is smaller in L than in L′: ∀Mu ∈M,ELdyn(u) 6 EL

′

dyn(u).

By definition we have 1 6 α
l′u
u 6 αluu and βu > 1 so ∀Ti ∈ T we can write:

1

(αluu)βu−1
6

1

(α
l′u
u)βu−1

By using the three positive constants Cen, wi and su and by using Lemma 1,
0 < xlui 6 x

l′u
i , ∀Ti ∈ T with a(i) = u, we obtain:

Cen

(
su

αluu

)βu

xlui
wiα

lu
u

su
6 Cen

(
su

α
l′u
u

)βu

x
l′u
i

wiα
l′u
u

su

Cen

(
su

αluu

)βu

plui 6 Cen

(
su

α
l′u
u

)βu

p
l′u
i

∑
Ti|a(i)=u

Cen

(
su

αluu

)βu

plui 6
∑

Ti|a(i)=u

Cen

(
su

α
l′u
u

)βu

p
l′u
i

With Equation 1 we have ELdyn(u) 6 EL
′

dyn(u).

Lemma 4. If the application period does not decrease, machine acceleration
always increases the energy consumption of the application.

Proof. Let L and L′ be two system configurations with l′v 6 lv,∀Mv ∈ M ,
i.e., L′ has some accelerated machines. Let Mu be a machine with l′u < lu.
Thus P (L) 6 P (L′) and the following inequality on the static energy of the two
system configurations holds: ∀Mu ∈M : εu×P (L) 6 εu×P (L′). Moreover with
Lemma 3 we know that for all machines the sum of the task energy consumption
is smaller in L than in L′:

∀Mu ∈M : ELdyn(u) 6 EL
′

dyn(u)

Thus we deduce that the total energy consumption of a machine Mu behaves
the same way as both the static and the dynamic part hold the inequality:

∀Mu ∈M : εu × P (L) + ELdyn(u) 6 εu × P (L′) + EL
′

dyn(u)

EL(u) 6 EL
′
(u)

Hence we conclude that E(L) 6 E(L′).

5 Algorithms
In this section, we present two algorithms. The first algorithm OptPer(L)
finds a system configuration with the optimal period and the minimal energy-
consumption for this period. The second one, OptEner(L), finds a system
configuration with the optimal energy-consumption and the minimal period for
this consumption.

8

5.1 Algorithm OptPer
The algorithm OptPer(L) (see Algorithm 1) returns the optimal system configu-
ration resulting from a given system configuration, i.e., the system configuration
with the optimal period and the minimal energy consumption for the optimal
period. The algorithm starts from an initial configuration L where each machine
is set at its maximal slow down level. Then, at each step, the algorithm speeds
up the machine Mc(L) by reducing its level lc by one. The new configuration is
noted L̂. If the new system configuration period P (L̂) is better than the current
best period, it is stored in L as the new best system configuration. Then a new
critical machine Mc(L̂) is identified and the algorithm passes to the next step.
Otherwise or if the slow down level of Mc(L̂) is null (l̂c = 0) the algorithm
finishes. The number of steps needed to finish this algorithm takes polynomial
time. Indeed, in the worst case, the algorithm iterates p× LMAX times, with
LMAX = maxu(max(lu)) a constant which does not depend on the problem
size. At each step, the computation of the necessary amount of the data sets
for all of the tasks takes O(n) operations and the complexity of algorithm 1 is
O(p× n).

Algorithm 1: OptPer(L)
Mc ← critical machine of L1

L̂← L2

l̂c ← l̂c − 13

M̂c ← critical machine of L̂4

while (l̂c > 0) do5

if
(
P (L̂) < P (L)

)
then6

L← L̂7

Mc ← M̂c8

l̂c ← l̂c − 19

M̂c ← critical machine of L̂10

return L11

To prove the optimality of the period returned by this algorithm we first set
Lemma 5 and its corollary 2. For that we first define A(L) as the set of system
configurations resulting from all possible machine accelerations from the system
configuration L. Let L and L′ be two system configurations.

∀L,L′ : L′ ∈ A(L)⇔ ∀u : l′u 6 lu (3)

For example, if L = (2, 1):

A(L) = {(2, 1), (1, 1), (0, 1), (2, 0), (1, 0), (0, 0)}

We recall that Mc(L) is one of the critical machines of the configuration L,
i.e., one of the slowest machines of the configuration L.

Lemma 5. Let us consider a configuration L and a subset of system configura-
tions L′ in A(L) where l′c = lc with Mc a critical machine of the configuration
L. Then the period P (L) is smaller than any period P (L′):

∀L′ ∈ A(L) | lc = l′c ⇒ P (L) 6 P (L′) (4)

9

Proof. From the definition of function A(L) in equation 3 we know that:

∀L′ ∈ A(L)⇒ l′u 6 lu

And from Corollary 1 we know that if the critical machine is not accelerated, the
period cannot decrease. By association we get that for all system configurations
L′ in A(L) with l′c = lc the period of configuration L′ is higher or equal than
the period of the configuration L.

As a consequence of Lemma 5, only the configurations in A(L) that increase
the speed level of a critical machine Mc(L̂) can provide a better period for the
system. We formalize this property in the following corollary:

Corollary 2. The only configuration that is able to decrease the period of the
system from a configuration L is to accelerate a critical machine.

Note that speeding up the critical machine by one level does not always lead
to a better period for two reasons. First because speeding up a critical machine
does not always lead to improve its own period. This acceleration is however
an imposed condition to improve the application period in some cases. Second
because there may be several critical machines at the same time, i.e., machines
that have the same period, and we must speed up all of them before improving
the application period.

Theorem 1. OptPer(L) finds the optimal system configuration L∗ with the
optimal period in A(L), i.e.:

L∗ = OptPer(L), ∀L′ ∈ A(L)⇒ P (L∗) 6 P (L′).

Proof. First we note that, based on the definition of the system period P (L)
given in Section 3, the order in which the machines are accelerated to reach
a configuration L′ from a configuration L does not impact P (L′). The period
P (L′) only depends on the configuration L′, so on the (l′1, l

′
2, . . . , l

′
p) values.

Now we consider a sequence of configurations S = 〈L1, L2, . . . , Lk〉 with
k = |A(L)| such that L1 = L is the initial configuration of the algorithm where
all the machines are set to their lowest speed level and L2, . . . , Lk ∈ A(L1). The
optimal configuration L∗ can be defined as:

L∗ = argmin
Lf∈S

(P (Lf))

Let La and Lb two system configurations such that the configuration La is
obtained by speeding up one machine from the configuration Lb. From Lemma 5
we know that having P (La) < P (Lb) implies that the critical machine Mc(Lb)
has necessarily been speeded up to obtain La.

As the order in which each machine is accelerated to reach a given configura-
tion Lf from the initial configuration L does not impact the period value P (Lf),
we can reorder the sequence S in a new sequence S′. S′ is reorganized such that
L1 = L is the first configuration of the sequence and then each configuration Lx
is obtained from configuration Lx−1 by accelerating one of its critical machines
Mc(Lx−1) is placed just after Lx. All other configurations are placed after. This
reordering of the sequence does not change the optimal value L∗.

10

Let La be the last configuration of the sequence S′ that is obtained by
accelerating a critical machine. Then:

∀Lb ∈ S′ s.t. b > a⇒ P (La) 6 P (Lb)

and
La = argmin

Lf∈{La,...,Lk}
(P (Lf)) (5)

Indeed only non critical machines are accelerated after step a and from
Lemma 2 we know that this will not decrease the system period.

Here 〈L1, . . . , La〉 is the sequence obtained by OptPer(L) step by step.
Thanks to the condition on line 6 in Algorithm 1, OptPer(L) takes the best
configuration from this sequence. As a consequence:

OptPer(L) = argmin
Lf∈{L1,...,La}

(P (Lf)) (6)

Then, from Equations 5 and 6, we deduce:

OptPer(L) = argmin
Lf∈{L1,...,Lk}

(P (Lf)) = L∗

Additionally to the optimal period algorithm OptPer(L) also finds the con-
figuration that is the less energy consuming.

Theorem 2. OptPer(L) finds the system configuration with the minimal energy-
consumption E∗ for the optimal period.

Proof. First we can remark that the static energy consumption of the machines
only depends on the system configuration period P (L) and thus is the same
as long as the system keeps the same period. This is in particular true for the
optimal period L∗ so that the proof can be limited to the study of the optimality
of dynamic energy consumption.

Then, as for the period computation, we can note that the energy consump-
tion definition does not depend on the order in which the configurations are used
to reach a target configuration. We can arrange the configuration sequence in
any order.

We consider again the sequence S′ of configurations where the configurations
are ordered in such a way that we accelerate critical machines first until L∗ and
then we put the other configurations after. As defined within the proof of the
previous theorem, let La be the last configuration of the sequence S′ that is
obtained by accelerating a critical machine. We have S′ = 〈L1, . . . , La, . . . , Lk〉
with k = |A(L)| and L = L1 the initial configuration where each machine
configuration is set at its maximal slowdown level. Now each configuration
in the sub-sequence 〈La+1, . . . , Lk〉 is a sub-optimal configuration so it is not
considered in the following as we are only concerned by configurations which
are potentially optimal. In 〈L1, . . . , L

∗〉 we also have sub-optimal configurations
that are not considered either. As a result we just have to look at configurations
L′′ in 〈L∗, . . . , La〉 whose period is minimal (P (L∗) = P (L′′)).

By definition L∗ is the first configuration that reaches an optimal period in
S′ so that an other configuration L′′ in S′ with an optimal period is such that

11

∀u : l′′u 6 l∗u. By using Lemma 3 we deduce that the energy consumed by each
configuration L′′ with P (L∗) = P (L′′) is at least as high as the consumption
E∗ = E(L∗) 6 E(L′′) and then that E(OptPer(L)) = E(L∗) is optimal.

5.2 Algorithm OptEner
From the previous algorithm, it is possible to define another greedy algorithm,
OptEner(L) (see Algorithm 2), based on the same approach that finds a con-
figuration L∗ with an optimal (lowest) energy consumption and with a minimal
period for this energy consumption. Note that the energy consumption, as de-
fined in the framework model, is composed of a static part and a dynamic part.
In some cases where the period is too large, the speed of the machines is thus
so low that the static part of the energy consumption becomes predominant.
It is then possible to increase the speed of the machine while decreasing the
energy consumption. On the other hand, if we increase too much the speed of
the machines, above the optimal value, the energy starts increasing. Then the
OptEner(L) algorithm finds a system configuration whose energy consumption
is optimal. As the speed of the machines is increased accordingly, OptEner(L)
is also a configuration with the minimal associated period. Note that this al-
gorithm also works to compute the minimal energy consumption for a given
period. We assume that the complexity of Algorithm 2 is O(p× n) considering
the same arguments used to compute the complexity of Algorithm 1.

Algorithm 2: OptEner(L)
Mc ← critical machine1

L̂← L2

l̂c ← l̂c − 13

M̂c ← critical machine4

while (l̂c > 0) do5

if
((
E(L̂) < E(L)

)
∨6 (

(E(L̂) = E(L)) ∧ (P (L̂) 6 P (L))
))

then7

L← L̂8

Mc ← M̂c9

l̂c ← l̂c − 110

M̂c ← critical machine of L̂11

return L12

The algorithm starts from L, the initial configuration where each machine is
set at its lowest speed level. Step by step, the algorithm looks for configurations
where the energy is decreased compared to the current configuration or if the
energy is not decreased at least the period is. The algorithm iterates until the
critical machine cannot be accelerated anymore, i.e., when the critical machine
has reached its highest speed level.

To prove the optimality of the algorithm we prove first that OptEner(L)
finds the system configuration with the optimal energy consumption and then
we prove that OptEner(L) finds the minimal period. Before these proofs, we
set Lemma 6:

12

Lemma 6. Let L′ be a configuration in A(L) and Mc be a critical machine of
configuration L such that the slowdown level for Mc is the same in L as in L′,
then the energy consumption of L is lower than the energy consumption of L′:

∀L′ ∈ A(L) : l′c = lc ⇒ E(L) 6 E(L′)

Proof. We know, from the definition of function A(L), that each machine slow-
down level lu of a machineMu in L is higher or equal than in L′ with L′ ∈ A(L).
And, considering Corollary 1, we know that the application period with the sys-
tem configuration L is lower or equal than any other system configuration L′ in
A(L) where l′c = lc (Mc =Mc(L)). Thus, by association, we show:

∀L′ ∈ A(L) :Mc =Mc(L) and l′c = lc ⇒ P (L) 6 P (L′)

Moreover, from Lemma 4, if the slowest machine is not accelerated then the
energy consumption of the system cannot decrease:

∀L,L′ : (∀u s.t. 1 6 u 6 p, l′u 6 lu ∧ P (L) 6 P (L′))
⇒ E(L) 6 E(L′)

Thus we find that the energy consumption in L is lower than in every system
configuration L′ in A(L) when l′c = lc.

Theorem 3. OptEner(L) finds the system configuration L∗ with the optimal
energy consumption E∗ = E(L∗) in A(L):

L∗ = OptEner(L), ∀L′ ∈ A(L)⇒ E(L∗) 6 E(L′)

Proof. Let L be a system configuration and let Mc be a critical machine of
configuration L. By using Lemma 6 we assess that the only way to lower the
energy consumption is to accelerate the critical machine.

The remainder of the proof is very similar to the proof of the OptPer(L)
optimality. First we state that the order in which the machines are accelerated
to reach a configuration L′ from a configuration L does not impact the energy
value. Indeed the energy consumed by a machine Mu only depends on energy
constants (Cen and βu), on its speed level (αluu) and its period (plui).

Then we consider the sequence of configurations S = 〈L1, L2, . . . , Lk〉 such
that k = |A(L)| and L = L1 is the initial configuration where each machine
configuration is set at its maximal slowdown level. We can thus assume that
L2, . . . , Lk ∈ A(L1). We sort these configurations in a new sequence S′ where
critical machines are accelerated first. S′ is reorganized as mentioned before, i.e.,
L1 = L is the first configuration of the sequence and then each configuration Lx
is obtained from configuration Lx−1 by accelerating one of its critical machines.
All other configurations are placed after. 〈L1, . . . , La〉 is the sequence obtained
by OptEner(L) step by step. As La is the last configuration where a critical
machine can be accelerated, we have lc = 0 in La. Obviously all configurations
that are ordered after La are configurations where the critical machines have
not been accelerated and these machines cannot have a better period. From
Lemma 4 we deduce that these configurations are more energy consuming than
configuration La:

∀f, a < f 6 k : E(La) 6 E(Lf)

13

We recall that the configuration sequence 〈L1, . . . , La〉 is explored by theOptEner
algorithm. Thanks to the condition on line 6 the algorithm only records the best
of the covered configurations and thus finds the configuration with the lowest
optimal energy consumption.

Theorem 4. OptEner finds the system configuration with the minimal period
for the optimal energy consumption.

Proof. We have already shown, in the proof of Theorem 1, that the order in
which we consider the machine accelerations does not impact the period value of
a given configuration. We also know, from Lemma 3, that a machine acceleration
can only decrease the energy consumption of the application if its period is
lowered. Let E∗ be the optimal energy consumption.

As for Theorem 2, we consider the sequence S′ where the configurations
that accelerate critical machines come first in the same order as explored by the
algorithm (until lc = 0). The other configurations are placed at the end of the
sequence. The shape of the sequence is:

S′ = 〈L1, . . . , L
∗, . . . , La, . . . , Lk〉

From the previous proof (Theorem 3) we know that the optimal energy con-
sumption is reached in this sequence at first for L∗ and that configurations after
La do not have an optimal energy consumption. Then we just have to con-
sider the cases between L∗ and La. These cases are examined by the algorithm
OptEner step by step. The algorithm does not finish when it finds the optimal
energy consumption with L∗ but continues until it reaches the maximum speed
level for a critical machine for the first time. This case occurs with La. Thanks
to the condition on line 6 of Algorithm 2 we guarantee that, in this interval, if
a period improvement is possible then it returns this best configuration.

6 Sub-optimal cases tied by constraints
In some cases the period or the energy may be constrained by external factors, as
a limited output throughput or as limited available energy in embedded systems
for example. In these cases, the optimal values computed by our algorithms are
not reachable and a multi-criteria computation must be done to find either the
best corresponding energy or period values. In this case the proposed algorithms
can be easily adapted by introducing a new condition in the “if condition” of
the algorithms. This condition allows to change the L configuration only if the
new configuration L̂ does not violate the constraint. It is then interesting to
explore different constraints to get the pareto front that gives the best solutions
for each configuration between the two optimal solutions.

For illustration we have computed the pareto front for a specific configuration
given in Table 1. The platform configuration (see Table 1a) is composed of five
machinesMu (1 6 u 6 5) with the same initial speed su (in computing units per
second) and 10 speed levels lu so that the slowdown factor αluu ranges between
1 and 2. The value of βu is either set to 2 or 3. The considered application
has five tasks. The associated weight wi (in computing units) and failure rate
f lui are given in Table 1b. The failure rate ranges between 0.01% and 10% and
depends on lu.

14

Machine Mu su lu αlu
u βu

0 3 [1,9] [1,2] 3
1 3 [1,9] [1,2] 2
2 3 [1,9] [1,2] 3
3 3 [1,9] [1,2] 3
4 3 [1,9] [1,2] 2

(a) Platform configuration

Task Ti wi fi
0 69 [0.13%,9.24%]
1 31 [0.4%,9.26%]
2 19 [0.51%,7.23%]
3 80 [0.29%,8.91%]
4 54 [0.54%,9.85%]

(b) Application

Table 1: Illustrated configuration parameters

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 3500

 30 32 34 36 38 40 42 44

e
n
e
r
g
y

c
o
n
s
u
m
p
t
i
o
n

i
n

W
h

period in seconds

pareto front
period under energy constraint

Figure 4: Example of a Pareto front for sub-optimal platform configurations

In Figure 4 we plot the period obtained under energy constraints. About
forty values of energy are taken between the optimal energy value (2881.26Wh)
and the energy corresponding to the lowest – optimal – period (3417.62Wh).
Note that the computed results are so close that they shape thick lines. Each
line corresponds to the optimal configuration for the critical machine considering
a range of energy values. The solid line gives the Pareto front obtained for this
platform and this application. The Pareto front contains only 11 solutions. Each
of them corresponds to a configuration given by our algorithm to guarantee the
lowest period for a given energy level that has not to be exceeded to perform
one output out of the system (see Table 2). Note that two Pareto solutions –
(32.4637, 3304.99) and (32.4642, 3235.26) – are very close but the corresponding
lines do not overlap as Figure 4 gives the impression. Figure 5 gives the details
of this area.

7 Conclusion
In this paper we tackle the problem of energy saving in the case of DAG shaped
workflow applications executed on distributed unreliable platforms. We assume
that the energy consumption and the fault rate decreases when the machines
are slowed down. Given an initial mapping of the tasks onto the machines

15

 3200

 3250

 3300

 3350

 3400

 3450

 32.463 32.4635 32.464 32.4645 32.465

e
n
e
r
g
y

c
o
n
s
u
m
p
t
i
o
n

i
n

W
h

period in seconds

pareto front
period under energy constraint

Figure 5: Zoom in the Pareto front for periods in the interval of 32.463 s and
32.465 s

period (s) 31.6122 32.4637 32.4642 32.9058 34.1930 35.9612
energy (Wh) 3417.62 3304.99 3235.26 3101.17 3058.26 3020.72
period (s) 36.5210 38.7897 41.2347 43.3722 43.6949

energy (Wh) 2950.99 2908.08 2902.72 2897.35 2881.26

Table 2: List of the 11 points belonging to the Pareto front presented in Figure 4

we propose two algorithms and prove their optimality. The first algorithm
minimizes the application period and finds the lowest global energy consumption
for that period. The second algorithm optimizes the energy consumption of the
system and finds the lowest period for that energy consumption.

In practical systems the energy consumption and the execution period are
however often opposed criteria and reducing one of them usually leads to in-
crease the other one. For this reason there is a need to find configurations that
balance these criteria. For that we have modified the algorithms and introduced
constraints values for both the energy and the period.

In the current work the failure rate of the tasks is a consequence of the
speed of the machines. As lowering the task period leads to more faults there
is a need to improve the reliability of the system. Improving the system quality
implies to find a trade-off between energy, speed and faults. As future work
we will consider the problem of optimizing the three criteria of energy, failures
and throughput to identify the best configurations of the system given different
objectives of improving the reliability, maximizing the speed and lowering the
energy consumption. We plan to use multi-criteria techniques and explore dif-
ferent fault models to find good configurations. Due to the complexity of the
tri-criteria problem we plan to develop heuristics that give efficient results for
each of the three objectives in practical cases.

16

References
[1] J. Subhlok, G. Vondran, Optimal mapping of sequences of data parallel

tasks, SIGPLAN Not. 30 (1995) 134–143.

[2] M. Tanaka, Development of desktop machining microfactory, Journal
RIKEN Rev 34 (2001) 46–49.

[3] E. Descourvières, S. Debricon, D. Gendreau, P. Lutz, L. Philippe, F. Bou-
quet, Towards automatic control for microfactories, in: Proceedings of
IAIA’2007, 2007.

[4] V. Rehn-Sonigo, Multi-criteria Mapping and Scheduling of Workflow Appli-
cations onto Heterogeneous Platforms, Phd thesis, ENS LYON (Jul. 2009).

[5] S. Diakité, J.-M. Nicod, L. Philippe, L. Toch, Assessing new approaches to
schedule a batch of identical intree-shaped workflows on a heterogeneous
platform, IJPEDS 27 (1) (2012) 79–107.

[6] A. Benoit, A. Dobrila, J.-M. Nicod, L. Philippe, Mapping workflow appli-
cations with types on heterogeneous specialized platforms, Parallel Com-
puting, Special Issue ISPDC’09 37 (8) (2011) 410–427.

[7] G. Da Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre, A.-C. Orgerie, J.-M.
Pierson, O. Richard, K. Sharma, The green-net framework: Energy effi-
ciency in large scale distributed systems, in: IPDPS’09, IEEE, 2009, pp.
1–8.

[8] T. Niemi, J. Kommeri, K. Happonen, J. Klem, A.-P. Hameri, Improving
energy-efficiency of grid computing clusters, in: GPC’09, Springer-Verlag,
2009, pp. 110–118.

[9] A. Benoit, P. Renaud-Goud, Y. Robert, Performance and energy optimiza-
tion of concurrent pipelined applications, in: IPDPS’10, IEEE, Atlanta,
USA, 2010, pp. 1–12.

[10] A. Benoit, P. Renaud-Goud, Y. Robert, R. Melhem, Energy-aware map-
pings of series-parallel workflows onto chip multiprocessors, in: ICPP’11,
IEEE, 2011, pp. 472–481.

[11] H. Aydin, Q. Yang, Energy-aware partitioning for multiprocessor real-time
systems, in: Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, IPDPS ’03, IEEE Computer Society, Wash-
ington, DC, USA, 2003, pp. 113 – 121.

[12] J.-J. Chen, Multiprocessor energy-efficient scheduling for real-time tasks
with different power characteristics, in: ICPP’05, IEEE, Oslo, Norway,
2005, pp. 13–20.

[13] A. Benoit, P. Renaud-Goud, Y. Robert, Power-aware replica placement and
update strategies in tree networks, in: IPDPS’11, IEEE, Anchorage, USA,
2011, pp. 2–13.

[14] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, M. J. Irwin, Soft errors
issues in low-power caches, IEEE Trans. on VLSI 13 (2005) 1157–1166.

17

[15] Z. Zhang, F. Li, H. Aydin, Optimal speed scaling algorithms under speed
change constraints, in: High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference on, 2011, pp. 202–210.
doi:10.1109/HPCC.2011.35.

[16] B. Schroeder, G. Gibson, A large-scale study of failures in high-performance
computing systems, Dependable and Secure Computing, IEEE Transac-
tions on 7 (4) (2010) 337–350. doi:10.1109/TDSC.2009.4.

[17] B. Schroeder, E. Pinheiro, W.-D. Weber, Dram errors in the wild: a
large-scale field study, in: Proceedings of the eleventh international
joint conference on Measurement and modeling of computer systems,
SIGMETRICS ’09, ACM, New York, NY, USA, 2009, pp. 193–204.
doi:10.1145/1555349.1555372.

[18] E. B. Nightingale, J. R. Douceur, V. Orgovan, Cycles, cells and platters: an
empirical analysisof hardware failures on a million consumer pcs, in: Pro-
ceedings of the sixth conference on Computer systems, EuroSys ’11, ACM,
New York, NY, USA, 2011, pp. 343–356. doi:10.1145/1966445.1966477.

[19] T. Ishihara, H. Yasuura, Voltage scheduling problem for dynamically vari-
able voltage processors, in: Symposium on Low Power Electronics and
Design, IEEE, 1998, pp. 197–202.

[20] N. Bansal, T. Kimbrel, K. Pruhs, Speed scaling to manage energy and
temperature, J. ACM 54 (1) (2007) 3:1–3:39. doi:10.1145/1206035.1206038.

18

