
Data-driven Prognostics of Proton Exchange Membrane Fuel Cell Stack 

with constraint based Summation-Wavelet Extreme Learning Machine 
 

K. Javed, R. Gouriveau, N. Zerhouni, D. Hissel 

 

FEMTO-ST Institute (UMR CNRS 6174) Besançon and FCLAB (FR CNRS 3539) Belfort, France, 

E-mail: firstname.lastname@femto-st.fr 

 
 

 

Keywords: Fuel Cells, Aging, Data-driven Prognostics, Prediction, RUL.  

 

ABSTRACT  

Aging of a fuel cell (FC) is an unavoidable process, nevertheless managing operating conditions and 

performing timely maintenance or control can prolong its life span. More precisely, the prognostics of 

FC is major area of focus nowadays. This paper presents a data-driven approach for prognostics of 

Proton Exchange Membrane Fuel Cell (PEMFC) stack using constraint based Summation-Wavelet 

Extreme Learning Machine (SW-ELM). The proposition aims at improving the robustness and the 

applicability of data-driven prognostics of aging PEMFC stack and estimating the RUL with limited 

data. The proposed method is applied to run-to-failure data of PEMFC stack from PHM challenge 

2014, which had the life span of 1155 hours. Performances of the approach are judged to encounter 

parsimony problems. Results show the adaptability of constraint based SW-ELM with limited learning 

data and its suitability for prognostics of PEMFC stack at frequent intervals. 

 

1. INTRODUCTION 
Fuel cell (FC) technology is an alternate source of renewable energy that has the power to change the 

world with a clean energy for the future. A FC can generate electricity as long as fuel is supplied. 

Among different types of Fuel Cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is a 

promising technology for the use of mobile, stationary and transportation applications. Mainly, due to 

the advantages like: high power density, rapid startup, light weight, low temperature [1]. However, the 

main barriers in commercialization of PEMFCs technology are long-term performances, durability, 

and high production and maintenance costs [2]. PEMFC suffers from a limited life span [3], and there 

is a need to increase its durability for large scale industrial deployment. In other words, opimization of 

FC service and minimization of its life cycle costs/ risks require continuous monitoring of aging 

process and accurate prediction of life time at which it will be unable to perform the desired 

functionality. In this context, Prognostics and Health Management (PHM) of FC is an emering 

discipline that has the potential for improving the use, support and life management of a FC system 

that consist of a stack and several supporting components. However, repairing the FC stack requires 

spealist attention. The parts of FC are generally manufactured with expensive and in some cases scarce 

materials. Ensuring that FC stack is in service for as long as possible is of vital importance [4], which 

highlights the requirement prognostics. Therefore, leaving aside ancillary systems, the dicussions in 

this paper are limited to prognostics of FC stack particularly with a data-driven approach. 

Basically, the primary objective of prognostics is to build an effective model that is capable of 

predicting the evolution of degrading indicators and estimating the Remaining Useful Life (RUL) of 

the FC stack. Knowing that FCs are highly multiphysics and multiscale systems and it is not easy to 

access their internal parameters to fully understand the aging process. The data-driven prognostics 

modeling can performed without detailed understanding about the stack aging phenomena.  

According to literature, we can classify data-driven RUL estimation strategies into two basic groups. 

In brief: 1) univariate degradation based modeling that rely on the prediction of continuous degrading 

state followed by a failure criteria, and RUL estimate is obtained when the degrading signal intersects 

a pre-defined failure threshold (FT). 2) direct RUL prediction modeling which learns from the data 

directly, the relation between observed trends and equipment end of life (EOL) time to obtain RUL 

(by finding similarity). This method does not require FT, but is dependant on sufficient knowledge on 



RULs from large training data. According to author’s knowledge, only two data-driven approaches 

have been applied so far for the prognostics of PEMFC stack namely, Adaptive Neuro-Fuzzy 

Inference System (ANFIS) [5] and Echo state network (ESN) [6]. The developments in both 

publications are based on univariate degradation based modeling. Because, due to lack of data 

availability, direct RUL prediction modeling is not possible for FC application. However, even the 

univariate degradation based approach cannot guarantee accurate prognostics. This is mainly due to 

the complex aging phenomena of FC stack, where several factors can impact its degradation behavior. 

Consequently, the acquired condition monitoring (CM) data are quiet uncertain. As for data-driven 

approach the model is within data, the uncertainty of measures due to sensor noise, unknown 

environmental and operating conditions, and engineering variations, etc., prevent prognostics model to 

capture dynamics of degrading equipment. Therefore, in order to predict the unknown future the 

model is not enough robust to adapt the degrading behavior over inputs that deviate from learned 

experience. In addition, lack of data availability requires models with high complexity like ESN, for 

which uncertainty of parameter intialization can be an added factor for decreasing the accuracy 

prognostics. Moreover, methods like ANFIS are based on slow iterative tuning and computationally 

costly and their computational time increases with size of learning data. Also, the choice of model 

inputs like: voltage, current, etc., and assumptions limit the applicability of a data-driven approach. 

Therefore, in the presence of such issues the data-driven prognostics can be quiet challenging.  

This paper contributes a univariate degradation based prognostics of PEMFC stack using constraint 

based Summation-Wavelet Extreme Learning Machine. The constraints are included in the modeling 

phase to reflect stack degradation using trends that properly decrease with respect to time and intersect 

with the failure threshold. The development focuses on improving robustness and applicability of data-

driven prognostics of aging PEMFC stack and estimating the RUL at frequent intervals. 

The paper is organized as follows. Section 2 presents the framework of data-driven prognostics, where 

each step is briefly discussed according to FC application. The choice of health indicators (variables) 

and the constraint based SW-ELM are described in section 3. Discussions on the prognostics results on 

PEMFC stack are given in section 4. Finally, section 5 concludes this work. 

 

2. DATA-DRIVEN PROGNOSTICS FRAMEWORK  
A data-driven appraoch can learn system behavior directly from CM data e.g. temperature, current, 

voltage, etc., and use that knowledge to infer its current state and predict future progression of failure. 

Therefore, when focusing on prognostics process, one can underline a flow that goes from 

multidimensional data through the RUL of equipment.  The frame of data-driven prognostics is based 

on the following necessary steps: acquiring CM data, data-processing, learn model (off-line), test 

model (on-line) and estimate RUL, as presented in Figure 1. The main aspects of each step are 

discussed including the issues and requirements for PEMFC application as follows. 

 
Figure 1. From stack monitoring data to RUL 

 

§ Acquiring CM data: to gather useful CM data from the FC stack, those are economically 

possible and easier to be used for prognostics. This will enable identifying the changes in 

aging stack which can develop faults or can even lead to failure. The measurements that are 

economically possible from PEMFC stack are: aging time, current, voltage, air compressor 

speed, cooling water temperature, Air/ H2 temperatures & Electrical Impedance Spectroscopy. 

§ Data-processing: to extract or select features/ health indicators from CM data, those are 

sensitive to stack degradation and clearly indicate fault growth. The effectiveness of a 

prognostics model is closely related to the quality of health indicators, which can impact 

uncertainty of prognostics.  Therefore, useful health indicators are those which reflect overall 

behavior of aging stack with irreversible degradation. In brief, feature extraction can be 

performed by applying signal processing techniques e.g. discrete wavelet transform, etc. The 



selection can be performed by drawing health indicators (or variables) in a new space by 

techniques like: Self-organizing map or clustering, etc., or by selecting variables that have 

highest information content, preferably monotonic and trendable ones.  For example Figure 2 

shows hourly mean voltage signal ( ) and the filtered trend by applying rloess filter (see 

section 4.1 for details). The large variations (peaks) in  are due to characterization phases, 

however, after filtering a monotonic and trendable health indicator is achieved. Obviously, the 

filtered signal is can be learned more accurately as compared to the actual .  

 
Figure 2. Filtering stack voltage signal  

 

§ Learn model (off-line): to fit changing observations. In other words, the learning problem is 

to estimate the target data from the given multidimensional input data. For example for 

PEMFC stack the prognostic model inputs can be current, cell/ stack voltage, aging time and 

the target can be stack power drop. Therefore, the off-line phase requires flexible methods that 

learn and infer complex relation among data. However, the accuracy of prognostics is strongly 

dependant on the learning. For instance, incomplete coverage data can impact model learning 

and can result poor predictions. In addition, model complexity, parameter initialization, 

computational time and assumptions are factors, which should be properly addressed.  
§ Test model (on-line): to project the current state of FC stack (at time tcurrent) up to defined 

failure threshold (FT), i.e., the failure time (tfail). With univariate degradation modeling this 

step is achieved with “iterative approach” for performing long-term multi-step ahead 

prediction (msp). In brief, the msp is achieved by a single model that is tuned (during learning 

phase) to perform a one-step ahead prediction . This estimated value is used as the 

regressors of the model to estimate the following ones and the process is repeated until the 

estimation of , where H represents the prediction horizon (see details in [7]).  However, 

due presence of issues like: measurement uncertainties, lack of data, modeling errors. The 

predictions obtained in recursive manner result error accumulation with increasing H, as 

shown in Figure 3a. Such poor predictions are useless for prognostics, because they do not 

intersect with FT and thus, the RUL estimation is impossible. This requires including 

constraints in the prognostics modeling phase to select those models which can project current 

state of FC stack up to FT, as shown Figure 3b.  Indeed, good predictions can enable 

managing the uncertainty of prognostics and will improve the accuracy of RUL estimates.  
 

 

 

 

 

 

 

 

Figure 3. a) Poor predictions vs. b) Good prediction 

 
§ Estimate RUL: to determine the life span of aging PEMFC stack. RUL is expressed by 

considering units corresponding to the primary measurement. For FC application the RUL is 

expressed in hours. The RUL is estimated as the time between the hour of prediction at 

tcurrent and the time at which the predicted value intersect the FT at tfail, as shown in Figure. 
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3b & given in Eq.1. According to US department of energy, the FT for FC is defined on the 

basis of its power drop, which states that the degradation should not exceed 10% of initial 

power on a 2500 hours life span [8]. Note that, it is nesseccary to update RUL at appropriate 

intervals, when new data arrive. It means that the frequency of RUL updation should be 

synchronized with preceding steps, i.e., acquisition, processing, model learning with new data. 

 

                                     (1) 

 

Finally, the complete data-driven prognostics enables decisions for managing operating conditions on-

line and performing timely maintenance off-line or control to prolong the life span of the FC stack. 

 

3. PROPOSED APPROACH 
According to the discussions on data-driven framework, this section higlights the choice of useful 

health indicators for PEMFC prognostics and also introduces a new health indicator. Following that, 

the constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) algorithm is 

presented. The proposed data-driven approach is based on following hypothesis. 

§ Stack voltage drop is a useful prognostics indicator. 

§ Stack aging process is irreversible degradation. 

 

3.1 CHOICE OF HEALTH INDICATORS FOR FC PROGNOSTICS 

The FC stack degrades due to different factors like: material degradation, design and assembly, etc., 

and the performance decay induced is strongly associated to the operating conditions (for e.g. 

operating temperature, current, etc.,) [9]. Also the performance of the FC stack is constrained by the 

worst performing cell [4]. Whatever the cause of stack degradation, it will result a voltage drop. 

Therefore, the stack voltage is considered useful for FC health assessment and prognostics.  

Based on this assumption and considering the importance of FT for prognostics a new health indicator 

is proposed, which is obtained by computing the difference between the stack voltage drop and the FT 

( ), Eq. 2. The final set of variables for data-driven prognostics are aging time ,  and . 

 

                                 (2) 

 

3.2 CHOICE OF SW-ELM ALGORITHM & CONSTRAINTS  

To account for robustness and applicability challenges of prognostics modeling (i.e., learning phase 

and the testing phase), the choice of a data-driven approach is crucial for achieving accurate RUL 

estimates. Recent advances show that data-driven approaches mainly based on machine learning 

methods are increasingly applied for fault prognostics. Among those methods, artificial neural 

networks (ANN) are most commonly used in PHM domain [10].  In this paper we present relatively a 

new data-driven algorithm, called as Summation Wavelet- Extreme Learning Machine [11]. 

Basically, the SW-ELM is one-pass batch learning algorithm for single layer feed forward network 

(SLFN), as depicted in Figure 4. SW-ELM is the combination of ANN and wavelet theory, and 

appears to be an effective prediction approach [11]. It benefits from an improved parameter 

initialization to minimize the impact of random weights and bias (of input-hidden layer), and an 

improved structure with dual activation functions for each hidden node, that work on actual scales of 

data. This enhances dealing with non-linearity in an efficient manner and improves robustness of 

algorithm. In comparison to recent data-driven approaches for FC prognostics, i.e., ANFIS and ESN, 

SW- ELM has better applicability due to major advantages like: rapid learning, good generalization 

ability, not prone to local minima and require only two parameters to be set by the user.    

Let note  and  the numbers of inputs and outputs,  the number of learning data samples , 

where , , , and  is the number 

of hidden nodes, each having activation functions (f1 & f2). To minimize the difference between 

output  and target  , there exist ,  and  such that: 

           

           (3) 



         

Figure 4. Machine learning view of SW-ELM for SLFN 

 

where  is the average output from two different activation functions θ and ψ  

 is an input weight vector connecting the  hidden to input layer 

neurons,  is the inner product of weights and inputs, and  is the bias of  hidden 

neuron.  is the weight vector to connect  hidden neuron to the 

output neuron. In matrix form Eq. 3 can be written as , where  is target matrix and  is 

hidden layer output matrix expressed as: 

           (4) 

  and              (5) 

 

The least square solution of the linear system , with minimum norm of output weights  is: 

 
ϯ               (6) 

  

where ϯ  shows the Moore-Penrose generalized inverse for the hidden layer output matrix . 

The SW-ELM algorithm can be synthesized as follows (see detailed algorithm in [11]). 

 

Algorithm 1  Brief learning scheme of SW-ELM 

Require 

        - N learning samples   inputs,  hidden nodes 

        - Arcsinh and Morlet activation functions  

1: Initialization of wavelet parameters (i.e., dilatation & translation) using heuristic approach. 

2: Initialize hidden nodes parameters ( , ) randomly & adjust with Nguyen widrow procedure.   

3: Obtain hidden layer output matrix  using Eq. 4. 

4: Find the output weight matrix  in Eq. 6. 

 

Although, SW-ELM appears to be a suitable data-driven method, however, due to lack data model 

learning it is sensitive to initialization of , . As a result, with each run the learning performances 

are changed, which can lead to poor predictions in the test phase, i.e., with recusrsive prediction the 

error accumulates with increasing horizon (see Figure. 3a). To overcome this problem and to improve 

robustness of SW-ELM, constraints are included in the prognostics modeling phase to ensure that in 

test phase msp decay properly to reflect stack degradation and intersect with FTs. In other words, 

models with poor learning are rejected in the test phase, which fail to satisfy following constraints. 

 

                 (7) 

               (8) 

                    (9) 



The constraints given in Eq. 7 and Eq. 8 are based on the assumption that FC stack degradation is 

irreversible (i.e., decreasing trend). Thus, the slope of msp at any step cannot be zero and predicted 

value ( ) at each step should be less than current state of stack at time tcurrent from which 

prediction is initiated. The constraint given in Eq. 9 ensures that predicted trends intersect FT. 

 

4. EXPERIMENT AND RESULTS DISCUSSIONS 
To validate the effectiveness of our proposition, real data PEMFC stack are used from PHM challenge 

2014 [12]. The considered data are from 5-cell PEMFC stack with an active area of 100 cm². The FC 

stack was operated under constant current of 70 A, and it had the life span of 1155 hours. The health 

indicators used for the prognostics task are aging time and hourly mean voltage of the stack (see [12]).  

 

4.1 Simultion settings and Performance evaluation  
Prior to prognostics modeling task, the stack voltage signal is filtered by applying rloess filter with 

span value 0.9, Figure1. Basically, rloess is a robust local regression filter that allocates lower weight 

to outliers, see [13]. The filtered signal clearly shows voltage drop with a monotonic trend which will 

reduce the uncertainty of SW-ELM, when few data are used in the learning phase.  

Note that, two groups of health indicators are used for prognostics: 1) ,  and 2) , ,  

 (section 3.1).  For the first group of variables, the structure of SW-ELM model is set to 4 inputs 

nodes which represent 3 regressors of  and  , hidden layer complexity is set to 20 nodes, and 

1 output . For second group of variables, there is an additional input in the structure, i.e.,  

(see Eq. 2). For both structures the parameter initialization constant C=0.01 for ,  (see [11]).  The 

FT is set to EOL. Assuming that a single SW-ELM model cannot guarantee accurate prediction, 

whatever the input set used for learning, a group of 100 SW-ELM models is learned, and the best 

model with minimum learning error is selected for testing. However, the selected model must satisfy 

the constraints (Eq. 7-9) in the test phase, otherwise the learning phase is repeated.  

The performances of the proposed approach are judged based on following criteria: 

§ Model complexity  

§ Prognostics accuracy over increasing perdition horizon (H) by: 

− Correlation of determination (R2), which should be close to 1. 

− PHM challenge 2014 scoring metric, which should be close to 1 (see [12] for details). 

§ Time to learn and test model for maximum prediction H and for minimum prediction H. 

 

4.2 Prognostics results 

4.2.1 Impact of constraints on predictions 

To validate the enhancements with proposed constraint based SW-ELM. In the first step, a group of 

100 models is trained in batch mode using same data set of 400 hours (from health indicators , 

). For the test phase, the best model with minimum learning error is selected to perform long-term 

msp with iterative approach. The prediction initiated at 400 hours for RUL estimation is shown in 

Figure 5. In comparison to actual , the predicted  decreases properly up to 1100 hours, 

however, it stays constant beyond that and fails to intersect FT to stop msp. In the second step, the 

learning data are increased to 500 hours from same health indicators , , and model training 

and selection are performed like the previous step. The prediction initiated at 500 hours diverges from 

the actual  approximately around 700 hours as shown in Figure 5.   

 
Figure 5. Long-term msp results without constraints 
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Both models fail to estimate RUL. The prediction performances are poor because, the learning phase 

cannot guarantee good models due to lack of training data and parameter initialization issues. 

However, the constraints introduced in the prognostics modeling phase (i.e., to learn and test model) 

enable choosing those models from the learning phase which fulfill the given conditions in Eq. 7-9. 

The long-term msp results in Figure 6, validate the enhancements due to constraints. Prognostics is 

performed at different hours, and for all cases msp properly show the degradation and intersect FT.   

 
Figure 6. Long-term msp results with constraint 

4.2.2 RUL estimation 
The RUL estimation performances with constraint based SW-ELM are investigated with two groups 

of health indicators: 1) ,  and 2) , ,  . The prognostics task is initiated at 650 

hours and the RUL is updated after 10 hours interval. That is, the predictions are performed when new 

data arrives. To achieve the repeatability of prognostics results, RUL is estimated from the mean value 

from the RULs obtained from 20 trials, at a given time interval. A comparison on the quality of RUL 

estimation with both groups of health indicators is given in Figure 7.  

 
Figure 7. RUL estimation with different sets of inputs for prognostics  

 

It can be judged from the qualitative analysis, that better RUL estimates are achieved by including 

proposed health indicator , as an input to constraint based SW-ELM. However, it is important to 

evaluate over all prognostics performances with both set of health indicators.  Table 1 summarizes 

prognostics performances using different criteria given in section 4.1. The results show that with the 

same complexity of 20 hidden nodes SW-ELM model for inputs   and , has higher 

accuracy with R=0.69 and Score=0.51. However, due to additional input  its learning time is 

slightly higher than the SW-ELM model with input indicators  .  Note that, the timings can 

vary due to decrease in the length of prediction horizon; even the learning data are increased, as given 

in Table 1. The SW-ELM model with 3 input indicators requires only 48.22 sec for a prediction 2 

hours. Also, the overall accuracy can also vary by changing the frequency of prediction intervals.  

 

Table 1. Comparison of overall prognostics performances 
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   20 nodes 0.69 0.51 105.88 sec 48.22 sec 
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5. CONCLUSION  
This paper presents data-driven prognostics of PEMFC stack with constraint based SW-ELM. The 

development focuses on improving the robustness and applicability of data-driven prognostics of FC. 

The constraints in the prognostics modeling phase ensure that predictions decrease properly to depict 

the FC aging behavior and intersect failure threshold (FT). This enables performing data-driven 

prognostics with limited data. This proposition of constraints can also be useful for other random 

projection methods as well (like Echo State Network). Moreover, a new health indicator is also 

proposed to infer the changing behavior of stack voltage with respect to FT, which further increases 

accuracy of RUL estimates. Overall results show that the performances with proposed approach are 

quite satisfactory to encounter parsimony problem, i.e., to look for a compromise between the 

prognostics model complexity, computational time and accuracy performances. Finally, RUL 

estimation with proposed SW-ELM can be performed at frequent intervals. 
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