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Abstract

An important issue in vibroacoustics is the topic of verification and validation of models for de-
sign. This paper addresses several points in this context: model correlation, optimal test design
and identification of reduced models. Model correlation criteria like Modal Assurance Criteria
(MAC) are widely used in structural dynamics in order to check the spatial coincidence between
two sets of vectors. This concept is extended here to vibroacoustic couplings, together with op-
timal test design strategies: on the basis of a given model, they allow finding of the best sensors
and actuators placements for the modal analysis. Finally, the last part of the paper proposes a
methodology allowing identification of experimental reduced models from the knowledge of the
complex modes issued from the vibroacoustical modal analysis. Both numerical and experimen-
tal results are used to check the efficiency of the procedure.

1. Introduction

Vibroacoustics constitute an engineering area in which multiphysic analyses are of first im-
portance because of the couplings between structural vibrations and acoustic waves in air. We
focus here on cases where the acoustic domain is a cavity, surrounded by an elastic domain,
which is representative of many practical situations in the fields of transports, buildings, etc. A
lot of efforts have been devoted to the development of numerical models to deal with this kind
of problem using finite elements models [1, 2, 3]. This approach is known to be efficient in
the low frequency domain, and this paper will not address the situations in which modal over-
lap becomes large enough to consider alternatives to the finite elements technique [4]. In the
model-based design context, model validation is a central point that constitutes a research topic
of growing interest [5]. The most popular way consists in validating conservative models using
correlation and model updating on normal modes, even if frequency response functions may also
be used [6], in particular for damping identification [7]. Some authors also investigated the pos-
sibility to use time responses for validation [8]. It should be emphasized that very few papers
are available in literature concerning model validation for vibroacoustics. The reference paper
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by Wyckaert et al. [9] extends the concept of modal analysis to structural-acoustics coupling and
is considered as an important input to the work presented in this paper.

In many engineering applications, the main goal is the reduction of acoustic and vibration
levels, and damping devices are key points for effective design. An important issue is clearly
the ability to correctly handle viscoelastic [10, 11] or poroelastic [12, 13] materials, even if this
implies often a large increase in terms of model parameters, which is not always easy to deal with
[14]. In this context, the identification of analytical models which are able to properly represent
the behavior of the system is still an open question, in particular concerning the damping terms.
Both stiffness and mass can be derived quite easily from models, or even from experiments with
reasonable confidence. As far as the dissipative effects are concerned, there is still no consensus
about the most reliable technique to obtain a physical description of damping which can be effi-
cient for simulation. Damping aspects have been at the center of many works, among which the
famous papers from Caughey [15] including considerations about normal and complex modes,
which are of first importance in the context of interest. Some review papers have been published
[16, 17, 18], including many references to important works on damping related aspects. One
of the ways to identify damping consists in finding a reduced model directly from experimental
data. In this paper we will mainly focus on this kind of approach, which allows the identification
of second-order matrices corresponding to classical stiffness, mass and viscous damping terms of
multi-degrees of freedom models. This topic has shown a growing interest over the last decades
in structural dynamics, but almost no comparable work can be found in open literature on vibroa-
coustics. It can be seen as a complementary approach to the reduced order techniques which are
popular in numerical analyses: a lot of research has been devoted to the development of specific
techniques for the derivation of numerical reduced models, based on various strategies among
which bases enrichment or projection on complex modes [19, 20, 21, 22]. They are widely used
for simulation, in particular in optimization runs and robustness analyses, that both require high
number of calculations. They are usually derived from large numerical models and are useful
to estimate physical quantities of interest. The alternative approach which is considered here,
consists in using experimental data, and related works in literature can be basically classified in
two categories. These categories are related to the nature of the input data: direct use of Fre-
quency Response Functions (FRFs)(which are basically very efficient if excitation on all dofs are
possible) [23], or use of complex modes, identified from the FRFs. A combination of both is also
considered by some authors [24, 25]. Among these methods, the ones which are based on the
use of a full modal basis (ie with a number of identified modes which is equal to the number of
degrees of freedom in the reduced model) are the most efficient for correct damping localization.
In these papers, the authors exhibit a large set of available methods, starting either from FRFs
or modal data to identify at least the damping matrix. These methods are applied and compared
on given test-cases. An interesting point is that these papers do not lead to the same conclusions
concerning the efficiency of the techniques for practical applications, which clearly means that
there is still some work to do.

This paper will be limited to the case where system matrices are obtained from identified
complex modes, with a particular focus on the so-called properness condition. This condition,
which is not addressed in the review papers referenced above, has been mentioned with various
names in several publications [26, 27, 28, 29]. It is automatically verified by the exact com-
plex modes of the system. When a full basis is extracted from experimental data to reconstruct
a physical model, this condition should be enforced on the complex modes to obtain physical
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results. Balmès [30] has proposed a methodology to find optimal complex vectors which are as
close as possible to the initial identified vectors, while verifying the so-called properness con-
dition. This technique has been extended recently to non self-adjoint problems [31]. However
it is not applicable for vibroacoustics because of the relationship between cross terms as it will
be detailed in this paper. Another way to obtain optimal complex vectors from measured ones
has been proposed by Adhikari [32, 33], but this method requires the knowledge of real modes,
which can be quite problematic in cases where damping has a great impact on structural behavior
[34, 30].

The choice of the degrees of freedom which are used to identify the reduced model is an im-
portant point. A non-validated model may be efficiently used to determine their locations. This
requires dedicated tools, namely model correlation and optimal test design strategies, which are
proposed in the first parts of this paper. As explained in the text, they are inspired from existing
techniques in structural dynamics.

This paper is organized as follows. Part 2 recalls the formulation of a vibroacoustic problem.
Damping considerations are given and the expressions of complex modes for vibroacoustics
are recalled, with a focus on the relationship between left and right eigenvectors. Some original
comments about the validity of this relationship are given at the end of the part. Part 3 is dedicated
to the definition of a correlation coefficient that can be used to correlate two models. Part 4
introduces a new technique for optimal correction of complex modes to estimate vibroacoustic
experimental reduced model, which is validated through the use of a simple numerical test-case.
Part 5 is dedicated to experimental validation of the approach, and includes a dedicated optimal
test design approach. Finally, conclusions and perspectives are given at the end of the paper.

2. Formulation of structural-acoustic problem

This first part recalls the formulation which is used in this work for internal damped vibroa-
coustic problems.

2.1. Coupled formulation
The internal vibroacoustic problem which is considered in this paper is presented in figure 1.

The basic equations of the coupled problem are classically available in literature [1, 2, 3]. Let ΩF

be the fluid domain, ΩS the structural domain. The boundary of the fluid domain is ΣFS ∪ΣF∪ΣA,
where ΣFS ∩ ΣF ∩ ΣA = ∅, while the boundary of the structural domain is ΣFS ∪ ΣS ∪ Σ0, where
ΣFS ∩ ΣS ∩ Σ0 = ∅. The partition of boundaries is done according to the mechanical conditions:

• ΣFS is the structural-acoustic coupling surface,

• ΣF is the part of the acoustic border on which a Neumann condition is applied, correspond-
ing to a rigid wall (a homogeneous Dirichlet condition could also be considered without
loss of generality),

• ΣA is the part of the acoustic border on which a Robin condition is considered, correspond-
ing typically to an absorbing material,

• ΣS is the structural boundary on which a Neumann condition is applied, corresponding to
a prescribed force,
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Figure 1: Description of vibroacoustic problem

• Σ0 is the structural boundary on which a homogeneous Dirichlet condition is applied, cor-
responding to a clamped area.

Physical quantities of interest are the structural displacement field u and the acoustic pressure
p in the fluid domain. An algebraic model of the vibroacoustic system can be derived from a
finite element discretization of the weak formulation associated to the local equations. For an
harmonic excitation at frequency ω, this typically yields to a problem such as

[
KS −L
0 KF

]
︸          ︷︷          ︸

[K]

+iω
[

CS 0
0 0

]
− ω2

[
MS 0
LT MF

]
︸           ︷︷           ︸

[M]

+
iω

Za(ω)

[
0 0
0 AF

]
{

U
P

}
︸  ︷︷  ︸
{q}

=

{
FS

Q̇

}
︸   ︷︷   ︸
{ f }

, (1)

where the matrices are obtained by discretization of the integrals of the weak formulation using
NS structural dofs {U} associated to u and NF acoustic pressure dofs {P} associated to p. KS ,
CS and MS are respectively structural stiffness, damping and mass matrices, KF and MF are
respectively named ”stiffness” and ”mass” matrices of fluid in the following. L is the coupling
matrix; AF is the matrix corresponding to the location of ΣA; FS is the external force vector
acting on the structure, Q̇ is the ”acoustic force”, which can be expressed in term of an acoustic
volume acceleration of an ideal monopole [9]; Za(ω) is the acoustic impedance of the absorbing
material used in the cavity.

2.2. Damping considerations, complex modes

In the context of low frequency applications for which modal analysis is one way to solve
the problem, the difficult point comes from the frequency dependency of the acoustic impedance
Za. In this work we propose a methodology which aims at finding an equivalent viscous matrix,
representing the damping effects in the fluid domain. This damping effect is local by nature
(corresponding to viscous and thermal effects in the porous layer), but since in the low frequency
domain the damping effects mainly affect the response at resonance, various representations may
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reproduce similar global behaviors. In cases where the effect of the frequency-dependency of Za

on the global behavior in the frequency range of interest is such that the equivalent viscous model
is no longer representative of the damping effects, it may be efficient to divide the frequency
band in smaller bands in which the procedures can be applied [30]. It should be emphasized
that similar comments may be done on the structural side where viscoelastic devices would lead
to frequency-dependent terms in damping effects. If losses can be considered through the use
of equivalent viscous damping terms in both structural and acoustical parts, the second-order
problem which is considered is [9, 35]

−ω2 [M] {q} + iω [C] {q} + [K] {q} = { f } , (2)

where [C] =

[
CS 0
0 CF

]
, CS and CF being non-negative, definite, symmetric matrices. This

implies in particular that no loss occur over the coupling area. This is valid while no absorbing
material is glued on the coupling surface. Cases with porous layers attached to the vibrating
structure have not yet been investigated by the authors. In the following, eq. (2) will be consid-
ered as the reference problem.

The direct quadratic eigenvalue problem associated to this equation is(
[M] λ2

j + [C] λ j + [K]
) {
φR j

}
= 0, (3)

and the corresponding adjoint eigenvalue problem writes(
[M]T λ2

j + [C]T λ j + [K]T
) {
φL j

}
= 0, (4)

where λ j is the j-th eigenvalue associated to the j-th right eigenvector
{
φR j

}
and j-th left eigen-

vector
{
φL j

}
.

Since the matrices are not symmetric, the eigenvalues of the problem are real or come in
pairs (λ j, λ

∗
j). If

{
φ j

}
is a (right or left) eigenvector associated to λ j, then

{
φ∗j

}
is a (right or left)

eigenvector associated to λ∗j . A very complete review of this kind of problem is addressed in
[36].

2.3. Complex modes and modal decomposition of the permanent harmonic response

The eigenmodes of the system can be efficiently used in particular for the modal decom-
position of the permanent harmonic response. This can be done considering the state-space
representation of the system:[

C M
M 0

] {
q̇(t)
q̈(t)

}
−

[
−K 0
0 M

] {
q(t)
q̇(t)

}
=

{
f (t)
0

}
. (5)

The eigenvalues of this problem can be stored in the spectral matrix

[Λ] =
[
\λ j\

]
. (6)

The j-th eigenvalue is associated to:
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• a right eigenvector
{

φR j

φR jλ j

}
. Storing the eigenvectors (in the same order as the eigen-

values) in the modal matrix
[
φR

φRΛ

]
, the following relationship is verified:

[
C M
M 0

] [
φR

φRΛ

] [
\λ j\

]
=

[
−K 0
0 M

] [
φR

φRΛ

]
. (7)

• a left eigenvector
{

φL j

φL jλ j

}
. Storing the eigenvectors (in the same order as the eigenval-

ues) in the modal matrix
[
φL

φLΛ

]
, the following relationships are verified:

[
C M
M 0

]T [
φL

φLΛ

] [
\λ j\

]
=

[
−K 0
0 M

]T [
φL

φLΛ

]
(8)

or [
\λ j\

] [ φL

φLΛ

]T [
C M
M 0

]
=

[
φL

φLΛ

]T [
−K 0
0 M

]
. (9)

The orthogonality relationships can be written using 2n arbitrary values to build the diagonal
matrix [ξ] =

[
\ξ j\

]
:[

φL

φLΛ

]T [
C M
M 0

] [
φR

φRΛ

]
=

[
\ξ j\

]
or

[
φL

φLΛ

]T [
−K 0
0 M

] [
φR

φRΛ

]
=

[
\ξ jλ j\

]
. (10)

The modal decomposition of the permanent harmonic response at frequency ω is finally:{
q(t)
q̇(t)

}
=

[
φR

φRΛ

] \ 1
ξ j(iω − λ j) \

 [ φL

φLΛ

]T {
f (ω)

0

}
eiωt, (11)

where f (ω) is the complex amplitude of the harmonic excitation. This relationship can also be
written using the n degrees of freedom notations in the frequency domain:

{q(ω)} =
[
φR

] \ 1
ξ j(iω − λ j) \

 [φL
]T
{ f (ω)}, (12)

In the field of experimental modal analysis, an experimental reduced model is built from com-
plex modes, which are identified using FRFs (Frequency Response Functions) with techniques
adapted from those classically used for symmetric problems [31].

Here, for practical reasons and without loss of generality, one will assume that the eigen-
shapes are normalized such as ξ j = 1, ∀ j = 1 ... 2n.

2.4. Particular case of vibroacoustics

In the case of vibroacoustic modes, due to the special topology of the problem, there is a
direct link between the left and right complex modes [9, 35]. This relationship is related to the
type of damping which is considered in the problem. In the considered case, with only viscous
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damping and without structural/fluid cross damping, if
{
φR j

}
=

{
υ j

ϕ j

}
is a right eigenvector

corresponding to λ j eigenvalue (υ corresponds to the structural dofs, ϕ to the acoustic dofs), then

it can easily be demonstrated that
{
φL j

}
=

{
υ j

−ϕ j/λ
2
j

}
. If the damping has any other expres-

sion, the relationship is no longer valid. To the author’s knowledge, this has not been indicated
before in the open literature related to vibroacoustical modal analysis. It can be demonstrated by
considering a full damping matrix [C]: in this case the right modal equation indicates that([

MS 0
LT MF

]
λ2

j +

[
CS CS F

CFS CF

]
λ j +

[
KS −L
0 KF

]) {
υ j

ϕ j

}
= 0. (13)

Using
{
φL j

}
=

{
υ j

−ϕ j/λ
2
j

}
in the adjoint equation yields

(
[M]T λ2

j + [C]T λ j + [K]T
) {
φL j

}
=

([
MS L
0 MF

]
λ2

j +

[
CS CT

FS
CT

S F CF

]
λ j +

[
KS 0
−LT KF

]) {
υ j

−ϕ j/λ
2
j

}
=


−

(
1
λ j

CT
FS + λ jCS F

)
ϕ j(

1
λ j

CFS + λ jCT
S F

)
υ j

 ,
(14)

which can be zero for all j only if CFS = 0 and CFS = 0. For more general damping consid-
erations, in particular if the structural part or the fluid domain exhibits another type of damping
(hysteretic or any other frequency-dependent expression), the special relationship between left
and right eigenvectors holds until there is no cross term in the damping matrix. Nevertheless, in
this case the modes can no longer be evaluated from a quadratic eigenvalue problem.

The relationship can finally be expressed as

If [φR] =

[
υ
ϕ

]
then [φL] =

[
υ

−ϕΛ−2

]
, (15)

and the modal normalization factor ξ j can be written

ξ j =
1
λ j

υT
j (MS λ

2
j − KS )υ j −

1
λ2

j

ϕT
j (MFλ

2
j − KF)ϕ j

 . (16)

3. Correlation criterion

In verification and validation procedures of modal models, correlation criterion are required
to check the similarity of modes and for modes pairing. This avoids association of non-physically
corresponding modes between two modal bases (model/test, model/model or test/test). When
dealing with experimental models, auto-correlation criterion can be used to check the ability of
the sensor placement to distinguish the modes of interest. In this section, a suitable criteria is
proposed for vibroacoustic applications. The modes of interest are the complex ones defined in
section 2.2.
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In structural dynamics, a very common tool for correlation of two modal bases is the MAC
criterion and the associated weighted MAC criterion [37]:

WMAC(φ, ψ) =
(φHWψ)2

(φHWφ)(ψHWψ)
, (17)

where φ and ψ are the two vectors of interest, W is a weighting matrix and H is used for the
hermitian (conjugate transpose) of a vector. Using the identity matrix for W gives the MAC
criterion. The correlation between two sets of vectors can then be done using the criterion in a
matrix representation. In structural dynamics without damping, if the two bases are identical,
the weighted MAC matrix is theoretically equal to unity if the mass (or stiffness) matrix is used
for W. Using the classical (unweighted) MAC, the matrix can be close to unity if the physical
mass is well distributed in space. These indicators can not be directly applied for non self adjoint
problems, but the criteria can easily be extended in presence of left and right eigenvectors:

WLRMAC(φL,R, ψL,R) =
(φH

L WψR)(ψH
L WφR)

(φH
L WφR)(ψH

L WψR)
. (18)

At this point, it should be mentionned that instead of this physical-state definition of the MAC,
the orthogonality relationships (10) may be used to define a MAC in the state-space. This would
lead to a mathematically exact correlation index, even in the case of high damping. However, it
has been observed in the practical applications that the indicator (18) gives good results, as it will
be shown later in the paper. Moreover this is coherent with the classical approach in structural
dynamics where only the physical-state version (17) is commonly used.

Suitable correlation criteria for multiphysics systems are very little discussed in literature
[38]. The use of a coherent weighting matrix is of first importance for multiphysics applications,
in particular when the orders of magnitude of the chosen physical variables are different, which
is typically the case in most of practical problems in vibroacoustics. Even for pure structural
dynamics applications, when rotation dofs are mixed with translation dofs, some troubles can
appear. However, in practice, the MAC value is often evaluated using only translation dofs
which explains the fact that the unweighted version of the MAC is generally used.

For the vibroacoustic case considered in this paper, the use of a weighting matrix is manda-
tory. The direct use of classical MAC value, on all dofs, or even on only translation or pressure
dofs, could lead to errors in correlation. The figure 2 shows the auto-MAC (auto-correlation)
of an exact vibroacoustic basis for these 3 cases. This example is taken from a parallelipedic
acoustic cavity closed by a flexible plate, but the authors have found equivalent conclusions on
various systems: it is clear that the correlation information is not appropriate, and that erroneous
results could be obtained using one of these criteria. It can also be observed that the MAC value
estimated using all dofs is almost the same as the one obtained by considering only pressures
dofs, since the order of magnitude of pressure is much larger than the one of the displacement.

Using the WLRMAC value with W = M leads to the identity matrix, as shown in figure 3a. In
practical applications involving experimental results, only a reduced set of dofs are equipped with
sensors, and a model reduction technique (typically, a Guyan reduction) can be used to estimate
the mass matrix reduced to the points of interest. In fully experimental situations, when no model
is available, a simplified lumped matrix M̃ can be defined to avoid the masking of structural dofs
by acoustic dofs. M̃ can be chosen as a diagonal matrix with unit terms for translation dofs and

a constant factor f for acoustic dofs. As shown in figure 3b, the choice of f =
< U2 >

< P2 >
, where
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Classical MAC
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Figure 2: a) Classical auto-MAC (using all dofs), b) auto-MAC using only U dofs, c) auto-MAC using only P dofs

< · > indicates the mean value, leads to an auto-correlation close to identity if the mass is well
distributed on the structure, which is the behavior of the classical MAC criterion.

MLRMAC
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Figure 3: a) auto-MLRMAC, b) auto-MLRMAC with lumped mass matrix

4. Identification of experimental reduced models

4.1. General case

Following the approach described in [31], it is possible to determine an experimental re-
duced model from the knowledge of N modes measured on N degrees of freedom. The general
procedure is briefly recalled here.

For a general nonsymmetric second-order problem, the orthogonality relations can be in-
verted in order to obtain the matrices of the system:[

C M
M 0

]−1

=

[
0 M−1

M−1 −M−1CM−1

]

=

[
φRφ

T
L φRΛφT

L
φRΛφT

L φRΛ2φT
L

]
,

(19)
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and [
−K 0
0 M

]−1

=

[
−K−1 0

0 M−1

]

=

[
φRΛ−1φT

L φRφ
T
L

φRφ
T
L φRΛφT

L

]
,

(20)

yielding
M =

[
φRΛφT

L

]−1
, (21)

K = −
[
φRΛ−1φT

L

]−1
, (22)

C = −
[
MφRΛ2φT

L M
]
. (23)

These relationships are valid only if the so-called properness condition is verified:[
φRφ

T
L

]
= 0. (24)

The complex modes of the system must then verify this relation if they constitute the full basis
of a physical system.

4.2. Particular topology of matrices for vibroacoustic coupling
Since the considered vibroacoustic problem exhibits specific matrices topology, additional

relationships must be verified by the complex modes. Indeed, Eq. (24) can be expressed using
only the right eigenvectors since left ones can be deduced from them:[

υυT −υΛ−2ϕT

ϕυT −ϕΛ−2ϕT

]
= 0. (25)

The equation (25) is not sufficient to insure that the topology of the reconstructed matrices
is the same as for the initial vibroacoustic system (1). In particular, the structural and acoustic
blocks can be found using the partition of the eigenvectors:

M−1 =

[
M−1

S 0
−M−1

F LT M−1
S M−1

F

]
= φRΛφT

L =

[
υΛυT −υΛ−1ϕT

ϕΛυT −ϕΛ−1ϕT

]
. (26)

In the same way, one has

−K−1 =

[
−K−1

S −K−1
S LK−1

F
0 −K−1

F

]
= φRΛ−1φT

L =

[
υΛ−1υT −υΛ−3ϕT

ϕΛ−1υT −ϕΛ−3ϕT

]
, (27)

and[
−M−1

S CS M−1
S 0

M−1
F LT M−1

S CS M−1
S + M−1

F CF M−1
F LT M−1

S −M−1
F CF M−1

F

]
=

[
υΛ2υT −υϕT

ϕΛ2υT −ϕϕT

]
. (28)

One can resume the set of equations using a distinction between the expression of identified
matrices 

MS = (υΛυT )−1

MF = −(ϕΛ−1ϕT )−1

L = −MS υΛϕT MF = (υΛυT )−1υΛϕT (ϕΛ−1ϕT )−1

KS = −(υΛ−1υT )−1

KF = (ϕΛ−3ϕT )−1

CS = −MS υΛ2υT MS = −(υΛυT )−1υΛ2υT (υΛυT )−1

CF = MFϕϕ
T MF = (ϕΛ−1ϕT )−1ϕϕT (ϕΛ−1ϕT )−1

(29)
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and the relationships that the complex eigenmodes must verify:

υυT = 0
υϕT = 0
υΛ−2ϕT = 0
ϕΛ−2ϕT = 0
υΛ−1ϕT = 0
(υΛυT )−1υΛϕT (ϕΛ−1ϕT )−1 + (υΛ−1υT )−1υΛ−3ϕT (ϕΛ−3ϕT )−1 = 0
ϕΛυT (υΛυT )−1υΛ2υT + ϕϕT (ϕΛ−1ϕT )−1ϕΛυT − ϕΛ2υT = 0.

(30)

The four first equations of system (30) correspond to the properness condition in the state-space
(25); the fifth one to the topology of the mass and stifness matrices (block extradiagonal null
terms); the sixth one indicates that coupling terms in mass and stiffness matrices are transposed
one from another; and the last one corresponds to the null block extradiagonal terms in the
damping matrix.

4.3. Optimal correction of complex modes
When the complex modes are available from experimental identification, one can use the

previous relationships to find the reduced model which is supposed to have the same behavior as
the measured one. The fact is that in general, the modes do not verify the constraints equations
(30), which results in a bad conditioning of the inverse procedure. It has been shown [30, 31]
that imposing the properness condition on complex modes performs an indirect regularization of
the problem. The approach consists in correcting the identified complex eigenvectors in order
that they verify the required constraints, before applying the inverse procedure. In practice, this
generally leads to small phase correction on the vectors and almost no change in amplitudes,
which is coherent with experimental considerations [31].

Constraints equations (30) have more complex expressions than in the general case consid-
ered in [31]. This is due to the special topology of the problem. It is then impossible to find an
explicit solution of the optimization problem using a Ricatti equation.

The regularization requires the resolution of a constrained optimization problem which can
be written as follows. Starting from the knowledge of experimental eigenmodes (eigenvectors
with structural dofs υe, acoustic dofs ϕe and eigenvalues Λ):

Find υ and ϕ minimizing f1 = ‖υ − υe‖ and f2 = ‖ϕ − ϕe‖

while



g1 = υυT = 0
g2 = υϕT = 0
g3 = υΛ−2ϕT = 0
g4 = ϕΛ−2ϕT = 0
g5 = υΛ−1ϕT = 0
g6 = (υΛυT )−1υΛϕT (ϕΛ−1ϕT )−1 + (υΛ−1υT )−1υΛ−3ϕT (ϕΛ−3ϕT )−1 = 0
g7 = ϕΛυT (υΛυT )−1υΛ2υT + ϕϕT (ϕΛ−1ϕT )−1ϕΛυT − ϕΛ2υT = 0.

(31)

Solving this problem is clearly not obvious, because the constraints are not verified by the
experimental vectors. Moreover the constraints are matrix constraints. One of the possibilities
consists in reformulating it as:

Find υ and ϕ minimizing f1 = ‖υ − υe‖ and f2 = ‖ϕ − ϕe‖

while ||gα|| − τα ≤ 0,∀α = 1...7 (32)
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where τα are arbitrary (small) thresholds and || · || is the Frobenius norm.
Instead of using time-consuming optimization algorithms, we have investigated several ways

allowing to approximate the solutions of this problem.

4.3.1. General nonsymmetric case
A simplified approach consists in not considering the particular topology of the matrices.

This limits the constraints and leads to this formulation of the optimization procedure:

Find υ and ϕ minimizing f1 = ‖υ − υe‖ and f2 = ‖ϕ − ϕe‖

while


g1 = υυT = 0
g2 = υϕT = 0
g3 = υΛ−2ϕT = 0
g4 = ϕΛ−2ϕT = 0.

(33)

It can be reformulated using a Hamilton function H, with 4 matrices of real Lagrange multi-
pliers δi (i=1 to 4), written as

H = ‖υ − υe‖ + α ‖ϕ − ϕe‖

+δ1 ⊗ υυ
T + δ2 ⊗ υϕ

T

+δ3 ⊗ υΛ−2ϕT + δ4 ⊗ ϕΛ−2ϕT .
(34)

Minimization of H yields

0 =

{
υ
ϕ

}
−

{
υe

ϕe

}
+ 1

2

[
δ1 + δT

1 δ2
δT

2 0

] {
υ
ϕ

}
+ 1

2

[
0 δ3
δT

3 δ4 + δT
4

]  υΛ−2

ϕΛ−2


υυT = 0
υϕT = 0
υΛ−2ϕT = 0
ϕΛ−2ϕT = 0.

(35)

Note that this system is coherent with the ones proposed in [30, 31]. Nevertheless since it
involves matrices in a nonlinear way, the numerical procedures required to solve it are still too
expensive to be compatible with real-time applications during modal analysis procedure. This
motivated further investigations for approximate resolutions.

4.3.2. Diagonal enforcement of properness condition
A simple way to enforce partially the properness condition consists in considering only the

diagonal terms of the properness (25). This leads to the two following decoupled problems:

Find υ minimizing f1 = ‖υ − υe‖

while g1 = υυT = 0; (36)

Find ϕ : minimizing f2 = ‖ϕ − ϕe‖

while g4 = ϕΛ−2ϕT = 0. (37)

Resolution of (36) is easy using the procedure described in [30]. (37) can also be solved by
using this procedure with unknown vector ϕ̃ = iϕΛ−1. The constraint is then ϕ̃ϕ̃T = 0, which is
the expression required by the procedure.
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This first simple approach will be compared with others in the following examples. The next
part introduces an alternative way for partial enforcement of the properness condition.

4.3.3. Over-enforcement of the properness condition
The procedure proposed in [30] being valid for any problem with a constraint of the form

xxT = 0, it is possible to use

x =

 υ
ϕ
−ϕΛ2

 , (38)

so

xxT =

 υυT υϕT −υΛ2ϕT

ϕυT ϕϕT −ϕΛ2ϕT

−ϕΛ2υT −ϕΛ2ϕT ϕΛ4ϕT

 . (39)

The four terms of (35) are included in this matrix, but correcting the eigenvectors with this
constraint will result in imposing two non required conditions, namely ϕϕT = 0 and ϕΛ4ϕT = 0.
Moreover, this will imply that ϕ and ϕΛ2 are independent, which means that eigenvalues will
possibly be also modified. Nevertheless, we will see in the next section that this procedure gives
interesting results.

4.3.4. Numerical illustration
In order to illustrate the impact and efficiency of the optimal correction, the following proce-

dure is applied:

1. Starting from given Frequency Response Functions (FRFs), complex modes are identi-
fied through least square complex curve fitting. Corresponding complex eigenvalues and
eigenvectors are used as starting point for the correction.

2. These complex modes are used in the inverse procedure to identify system matrices. These
matrices are then used to compute the FRFs of the system using eq. (29), which can be
compared to the initial ones. This first identification process is called ”direct”. Differences
between FRFs are due to the fact that the identified complex modes do not verify the
relations (30).

3. The ”diagonal” correction procedure is performed on the eigenvectors before the applica-
tion of the inverse procedure. Matrices are identified and FRFs are computed again. This
technique is called ”diagonal” properness enforcement.

4. Equivalent work is done after application of the ”over” enforcement of the properness on
the complex modes.

A very simple numerical test-case is first considered to illustrate the principle of the approach.
The system has 2 degrees of freedom and a topology coherent with the vibroacoustic formulation:

[
3.234 0
−1.465 1.275 × 10−2

] {
ẍ
p̈

}
+

[
1.123 0

0 3.185 × 10−3

] {
ẋ
ṗ

}

+

[
1000 1.465

0 1.65

] {
x
p

}
= 0.

(40)
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The numerical values of the terms in the matrices have been chosen randomly, with the con-
straint that the order of magnitude of the various terms are in accordance with a physical system
exhibiting two modes in the low frequency range. Many other ”random” cases have been in-
vestigated, leading to similar conclusions. The eigenvalues of the system described by (40) are
λ1 = −0.1065 + 10.16i and λ2 = −0.1920 + 19.68i, hence

φR =

[
−0.0266 + 0.0263i 0.0597 − 0.0598i
12.1474 − 11.89i 10.39 − 10.22i

]
. (41)

In order to improve readability, the conjugate terms have been omitted in this expression. In
the calculations, the matrix [φR] has 2 lines and 4 columns.

10% uniform random noise has then been added on the real and imaginary parts of each
component of the eigenvectors. One realization of this statistical process is (we use the D index
to refer to the direct identification)

φD
R =

[
−0.0274 + 0.0256i 0.0599 − 0.0614i
12.5937 − 11.6587i 10.0916 − 10.0166i

]
. (42)

This high noise level allows testing of the robustness of the procedure. The properness matrix
is then:

φD
Rφ

D
L

T =

[
−0.0002 −0.0008
−0.1139 0.3066

]
. (43)

Using the ”diagonal” procedure leads to

φG
R =

[
−0.0275 + 0.0255i 0.0602 − 0.0611i
12.3188 − 11.9366i 9.8712 − 10.2546i

]
, (44)

which corresponds to the properness matrix:

φG
Rφ

G
L

T =

[
0 −6.99 × 10−4

−0.1345 −8.9 × 10−16

]
. (45)

Compared to (43), it is clear that the procedure works as awaited.
Next, ”over” enforcement is performed on the vectors, resulting in

φO
R =

[
−0.0254 + 0.0275i 0.0611 − 0.0602i
12.2942 − 11.9498i 9.8516 − 10.2667i

]
, (46)

which corresponds to

φO
Rφ

O
L

T =

[
−3.3 × 10−16 −8.4 × 10−17

−2.0 × 10−15 1.3 × 10−15

]
. (47)

The O index is used to refer to this case. The full matrix is now close to zero, which is
coherent.

Matrices identification is now possible using equations (21) to (23). Mass matrices are

MD =

[
3.113 0.0001
−1.403 0.0127

]
, MG =

[
3.113 0.0001
−1.402 0.0127

]
,

MO =

[
3.118 0.0001
−1.404 0.0127

]
.

(48)
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Stiffness matrices are

KD =

[
986.1 1.465
5.047 1.641

]
, KG =

[
986.1 1.466
5.118 1.641

]
,

KO =

[
987.4 1.465
4.991 1.641

]
.

(49)

Finally, the damping matrices are

CD =

[
0.4310 −0.0044
−1.151 0.0099

]
, CG =

[
1.108 −0.0053
−1.227 0.0029

]
,

CO =

[
2.228 −0.0042
−0.5836 0.0004

]
.

(50)

It is then clear that the three procedures give almost the same values of mass and stiffness
matrices. The topology is not exactly the same as the initial system: the terms that should be null
are small, and the extradiagonal stiffness and mass terms that should be equal exhibit less than 5%
of difference. Much larger differences are observed in the damping matrix: the direct procedure
gives the most erroneous values, while the corrected vectors result in more pertinent values.
The ”diagonal” procedure gives correct values of the diagonal terms, but ”large” extradiagonal
terms are estimated, while the ”over” procedure gives almost twice damping on the diagonal and
extradiagonal terms are reduced. It should be emphasized that the starting data are the noisy
vectors, which do not necessarily correspond to any second-order physical system. Moreover,
the addition of noise on the vectors could result in changes in the apparent stiffness, mass or
damping of the system, which possibly explains the differences observed on the values in the
damping matrices. The objective of the methodology is to determine the physical system which
exhibits a behavior as close as possible to the one corresponding to the identified modal basis (the
”noisy” one in our case). The damping matrix identification procedure is then highly sensitive to
noise, and the correction procedures act as indirect regularizations.

Once these matrices are identified, the FRFs of each system can be computed. Figure 4 gives
the collocated structural FRFs computed from:

• the modal synthesis using the original vectors with added noise, this is the reference,

• the identified matrices (without properness enforcement, and with the two procedures de-
scribed before).

This figure illustrates the fact that the direct identification does not allow correct estimation
of the dynamics of the system, in particular on the phase of the signals, while the two results
obtained after optimal correction lead to better estimation of the responses. The only procedure
that reproduces correctly the damping effect at resonances is the ”over” technique.

In this 2-dofs case, the numerical cost of the procedure is obviously very low. For larger
problems, the cost is mainly associated to the resolution of the Riccati equation, which remains
low compared to global constrained optimization techniques that would be required for solving
the problem (31). In reference [31], some details are given about the practical implementation
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Figure 4: Comparison of FRFs estimated from corrected eigenvectors on simulated data

of the Riccati solver and associated numerical issues. This is very coherent with the fact that
for practical applications, it is not expected that the number of degrees of freedom is very large,
because of measurement limits: each degree of freedom has to be measured. This limitation
could be overcome in the next years thanks to the deployment of various measurement devices
with high spatial resolution.

5. Experimental validation of the procedure

5.1. Description of the system
In this part, an experimental illustration of the procedure is proposed. Experiments are con-

ducted on the so-called ”small cabin” of LVA-INSA Lyon, composed by a parallelepipedic cavity
closed by a flexible plate, as shown on figure 5. Several plates being available, the results pre-
sented here correspond to an aluminum plate which is 5 mm thick, its size is 500 × 600 mm2.
In the numerical model, the damping of the plate is introduced by a complex Young’s modulus
E∗ = E(1 + jη) with η = 10−2. The acoustic cavity size is 500 × 600 × 700 mm3. Damping
in the cavity is introduced with a sample of mineral wool, whose acoustic impedance has been
characterized in an impedance tube (see fig. 6).

When dealing with experimental reduced models, the choice of the degrees of freedom is of
first importance since the model will deeply depend on this choice: the location of the sensors
should be carefully choosen in order that the reduced model can represent the behavior of the
system on the frequency range of interest. This choice can be done arbitrarily, or based on a non
validated model, as shown here.

A finite element model of the coupled system is used to perform this analysis. The values of
the 12 first eigenfrequencies are given in table 1.

The choice of a 5 mm thick plate implies some experimental difficulties, in particular excita-
tion of the plate modes by acoustic excitation requires high acoustic levels. But this configuration
is interesting since it exhibits three groups of modes with various coupling levels:

• modes 1 and 2 are decoupled,
16



Figure 5: Views of the experimental setup (LVA-INSA Lyon)
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Figure 6: a) Acoustic cavity with absorbing material location, b) Material impedance

Order 1 2 3 4 5 6
f (Hz) 152 244 271 286 334 347
Nature P11 C001 P12 C010 P21 C100
Order 7 8 9 10 11 12
f (Hz) 374 419 440 456 472 487
Nature C011 C101 C110 P22 P13 C02

Table 1: Eigenfrequencies of the system. Dominant movement is indicated by a letter: C=cavity, P=plate. Following
numbers indicate the mode order in each direction.
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• modes 3 et 4 are weakly coupled,

• modes 5 et 6 are highly coupled.

These different coupling levels are of first interest to investigate the efficiency of the methodol-
ogy.

5.2. Optimal pickup design
We focus on the [0-350Hz] frequency band, in which 6 elastic modes can be observed ac-

cording to the finite element model. Since in this band there are 3 plate-dominant modes and 3
cavity-dominant modes, it has been decided to use 3 microphones and 3 accelerometers that will
constitute the degrees of freedom of the reduced model. The experimental setup is completed by
a shaker and a loudspeaker for the excitation of the system.

Several pickup design methodologies are available in structural dynamics literature. In order
to find the optimal pickup locations for our system, a QR decomposition of the modal basis has
been performed as follow:

• restrain the modal basis to measurable dofs (transverse displacements on the plate, acoustic
pressure inside the cavity);

• perform the QR decomposition on both structural and acoustic parts of the modal basis;

• select the degrees of freedom which are identified by the decomposition as pickup loca-
tions.

The technique is derived from [39]: if [Φ] is the modal matrix restrained to the measurable
degrees of freedom, the QR decomposition allows the determination of the degrees of freedom
that participate the most to the independence of vectors:

[Φ]T [E] = [Q] [R], (51)

[E] being a column permutation matrix, [Q] an orthogonal matrix and [R] an upper triangular
matrix whose diagonal terms are ranked in descending order.

This technique is known for its discernability and distinguishability performances: a mode
is highly discernable if its resonance can be observed on a large number of degrees of freedom,
and two modes are distinguishable when their components on measured dofs allow their differ-
entiation.

Without a priori knowledge of the number of sensors to use in each domain, the QR decom-
position might be applied on the modal matrix including both structural and acoustic degrees of
freedom, but in that case, a preconditionning is mandatory to avoid difficulties associated to the
differences of magnitudes in the values of the components. This can be done using the basic ap-
proach proposed in section 3 for experimental models, but since a numerical model is available,
more advanced techniques are available in literature [40].

Results of the optimal pickup location procedure are given in table 2. Positions (x, y, z) are
given in m, the cavity dimensions being 0, 5 × 0, 6 × 0, 7 m3.

This sensors positioning results in the Auto-MLRMAC matrix shown in figure 7. It compares
the value of the matrix when all measurable degrees of freedom are observed, and when only the
6 sensors are used. The reduction of the number of observation points do not deteriorate too
much this matrix, which indicates that the sensor locations are pertinent.

The use of this non validated model of the system allows optimal positioning of the sensors
before determination of the experimental reduced model.
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Sensor ID x y z
a1 0,116 0,139 0,135
a2 0,225 0,6 0,475
a3 0,284 0,234 0,622
s4 0,287 0,323 0,7
s5 0,217 0,107 0,7
s6 0,101 0,178 0,7

Table 2: Locations of the microphones (ID a1 to a3) and accelerometers (s4 to s6)
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Figure 7: Auto-MLRMAC on the 6 modes of interest, when all measurable dofs are observed (left), and when only 6
dofs are observed (right)

5.3. Optimal exciter design

The same methodology, using a QR decomposition, gives optimal exciter location. Table
3 shows the position of the exciters, that correspond to pickup dofs: for experimental reduced
model identification, it is mandatory to have the exciters collocated with some measurement
points.

5.4. Reduced model identification from structural excitation

The easiest way to identify a vibroacoustic reduced model using the inverse procedure pre-
sented in section 4 is to use an impedance head at structural excitation point(s) in order to identify
the input and cross FRFs. This section intends to show that the methodology provides efficient re-
sults when only one structural excitation is used. The efficiency of the methodology is illustrated
using FRFs. The figure 8 shows the following curves:

• The Measured FRF. For illustration purpose, only one of the many FRFs is presented here
(corresponding to the collocated input and output on the first degree of freedom).

Exciter ID x y z
1 0,116 0,139 0,135
2 0,287 0,323 0,7

Table 3: Locations of loudspeaker (1) and shaker (2)
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• The Modal FRF built from the complex eigenmodes identified using LSCF technique [31].
This is somehow the reference since modes constitute the input before optimal correction.

• The Direct FRF reconstructed using the matrices obtained from eq. (29) from the knowl-
edge of eigenvalues and eigenvectors. This procedure clearly fails in this case, because
equations (30) are not strictly verified. Some small differences in the eigendata can induce
large discrepancies on the identified system.

• The Proper FRF (referenced as ”over”) obtained using data with enforcement of the proper-
ness condition. In the frequency band of interest, the procedure gives very interesting
results: the identified matrices are able to reproduce the behavior of the system.
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Figure 8: Impact of properness enforcement on reconstructed FRFs (left: FRFs6-s6, right: FRFs6-a1, s=structural,
a=acoustic)

In conclusion, using only structural excitation leads to coherent results. The corresponding
reduced model can be applied for any structural excitation in a very efficient way to estimate the
vibroacoustic levels. When this model is used with acoustic excitation, the levels are unfortu-
nately badly estimated. The next section will consider the case of acoustic excitation.

5.5. Vibroacoustic reciprocity

Only one excitation point is theoretically required to identify the full model. It is neverthe-
less clear that increasing the number of excitation points will yield to an improvement of the
experimental model since new information will be added to improve the conditioning of the in-
verse problem. In particular, it can be interesting to use acoustic sources. If these sources are
monopoles, the vibroacoustic reciprocity relation holds [41, 42, 35]:

Pi

F j

∣∣∣∣∣∣
Q̇i=0

= −
Ü j

Q̇i

∣∣∣∣∣∣
F j=0

(52)

This relation must be verified by the structural-acoustic cross FRFs. In particular, it can be
useful to identify the acoustic source strength which is not easy to measure directly. As indicated
in reference [9], the source can be calibrated in an anechoic chamber using transfer functions
between input voltage and structural velocity of the loudspeaker used as acoustic source. Another
strategy consists in using reciprocity relationship (52) associated with input voltage measurement
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in order to identify the unknown transfer function between acoustic volume acceleration and
input voltage. This is the strategy which has been adopted in this work: figure 9 illustrates the
value of the identified transfer function for the experimental setup considered here. Starting from
voltage measurement, it has been used to identify the strength of the acoustic source.
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Figure 9: Identification of transfer function between acoustic volume acceleration and input voltage from reciprocity

5.6. Reduced model identification from acoustic excitation

In this part, the complex modes identified with acoustic excitation are used to build the re-
duced model. The results are shown in figure 10. After use of the data obtained from the com-
bination of the measured FRFs with the transfer function shown in figure 9, the LSCF procedure
provides the complex modes of the system. As shown in figure 10, the result of the identification
is very good on the structure side, while on the cavity side, the synthesized pressure exhibits
discrepancies, except at resonances where both curves coincide quite well. Between resonances,
it seems that the acoustic source identification procedure is not fully satisfying. This procedure
clearly needs more investigation for correct estimation of amplitude on the whole frequency
band. However, the topic addressed here being related to the optimal correction of the complex
modes, the modal synthesis is used as reference for the correction procedure. Starting from these
complex modes, the direct methodology gives completely erroneous results, while the optimally
corrected modes allow precise estimation of the matrices of the reduced problem, on both the
acoustic and the structure sides.

6. Conclusions

In this paper, several tools for model validation in vibroacoustics have been proposed. Damp-
ing considerations have been presented to clearly exhibit the validity domain of the approach.
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Figure 10: Impact of properness enforcement on reconstructed FRFs (left: FRFa1-s6, right: FRFa1-a1, s=structural,
a=acoustic)

Correlation tools have been derived and an optimal test design strategy has been proposed to de-
fine the sensors and actuators locations for vibroacoustic modal analysis. Moreover, a method-
ology has been provided for the identification of vibroacoustic experimental reduced models,
starting from complex modes. These modes are modified in an optimal way to enhance the con-
ditioning of the inverse procedure. The methodology is based either on structural or acoustic
excitation. In both cases, levels at resonances are evaluated with a very good degree of confi-
dence. Between resonances, the structural vibrations levels are also very well estimated whatever
the excitation is, while for acoustical levels, some investigations are still needed in the case of the
use of an acoustic source. The future steps in the developments of the methodology will concern:

• the extension to MIMO (Multi-Input Multi-Output) identification procedure, in order to
check the added-value of a combined structural and acoustic excitation;

• the extension of the methodology to frequency-dependent damped configurations, in order
to identify reduced models of structures including porous materials for example.

This methodology will allow analysts to perform some hybrid experimental/numerical modelling
strategy to build efficient vibroacoustic reduced models. It will also constitute a robust tool to
estimate equivalent simple (low-size) physical models of vibroacoustical systems, to properly
investigate effects of mass, stiffness or damping changes. In particular, the effect of amplitude-
dependent damping could be finely analysed with the matrices obtained from the optimally cor-
rected modes.
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