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Abstract. 1/f noise is very common but is difficult to handle in a metrological

way. After having recalled the main characteristics of a strongly correlated noise,

this paper will determine relationships giving confidence intervals over the arithmetic

mean and the linear drift parameters. A complete example of processing of an actual

measurement sequence affected by 1/f noise will be given.
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1. Introduction

The flicker noise, or 1/f noise, may be encountered everywhere from atomic physics to

astrophysics through nano-technologies, electronics, . . . [1]. Although its origin is better

understood [2], it remains a difficult issue and the nightmare of metrologists because

of the strong correlations of its samples inducing a fundamentally duration dependent

behavior. For example, unlike the white noise, the 1/f noise does not decrease by

averaging but remains almost the same. Moreover, this is one of the way to be faced with

the flicker noise: very often, we observe that the dispersion of measurements decreases

as 1/
√
N , where N is the number of averaged measurements, until a certain value of

N for which the decrement stops. The flicker floor is reached. It is then of importance

to identify when we pass from a white noise to a 1/f context and what is the optimal

average number.

However, once the flicker floor is reached, it is still possible to perform metrology

but some precautions must be taken. Firstly, we must keep in mind that the 1/f noise

takes its name from the dependency of its spectral density versus frequency: it means

that the spectral density tends toward infinity for f = 0. We have thus to ensure the

convergence of the statistical parameters, such as the mean, by introducing a low cut-off

frequency, below which the spectral density tends toward 0. But the existence of such

http://arxiv.org/abs/1407.7760v6
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Figure 1. Measurement principle.

a low cut-off frequency may be puzzling. This paper will give some clues to understand

its physical meaning and the way to model it. Then, it is necessary to be able to define

confidence intervals in such a context. Of course, the classical relationships which are

designed for white noise are not valid for flicker.

This paper intends to determine rigorously new relationships giving confidence

intervals over statistical parameters (arithmetic mean, drift coefficients) versus the

number of measurements, the variance of the residuals and the hypothetic low cut-

off frequency. In order to obtain such relationships, approximations will be performed

on the autocorrelation function of the 1/f noise and on the variance calculation. These

results will be validated by both numerical computations and Monte-Carlo simulations.

Then, a methodology will be proposed for handling properly measurements in a 1/f

context. Finally, this method will be applied to experimental cases.

But more than practical recipes, this paper aims to give a general method for finding

such relationships for other types of noise in other contexts and for carefully validating

the results.

2. Problem statement

2.1. Measurement principle

Let us consider that we want to measure a quantity, e.g. a duration D, meant to be

constant. In order to refine this measure and to verify the constancy of this quantity,

we may perform several measurements, say N , at different dates and compute a linear

regression over these measurements (see figure 1). Let us denote di the measurements:

di = C0 + C1ti + ǫi (1)

where C0 and C1 are, respectively, the constant and the linear coefficients of the drift,

ti the date of the measurement di and ǫi the measurement noise, i.e. the random

fluctuations of the measurements.
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An estimation‡ of the quantity D may be obtained thanks to the arithmetical mean:

D̂ =
1

N

N−1
∑

i=0

di. (2)

The linear regression provides an estimation of the drift coefficients: Ĉ0 and Ĉ1.

We can then extract the residuals ei as the difference between the measurements

and the estimated drift:

ei = di − Ĉ0 − Ĉ1ti, (3)

and compute the variance of the residuals σ2
e .

Since the quantity D is supposed to be constant, the slope of the drift should be

null. We have then to verify that the estimate Ĉ1 is compatible with 0, i.e. that the

uncertainty over the slope estimate is larger than the estimate:

∆C1 > Ĉ1. (4)

We also have to define a confidence interval ∆D around the estimate D̂:

D̂ −∆D < D < D̂ +∆D @ 95 % confidence. (5)

The main issue is then: how is it possible to estimate the uncertainties ∆D, ∆C0

and ∆C1 from the variance of the residuals σ2
e? The answer is well known if the random

fluctuations are following a Laplace-Gauss distribution, i.e. {ǫi} is a white Gaussian

noise, but what happens if {ǫi} is a 1/f noise? That is the purpose of this paper.

2.2. White noise versus strongly correlated noises

Let us consider that the N measurements were regularly spaced and were performed

with a sampling step τ0: ti = iτ0.

The drift coefficients are computed from these relationships [3]:

Ĉ0 =
2(2N + 1)

(N − 1)N

N
∑

i=1

di +
−6

(N − 1)N

N
∑

i=1

idi (6)

Ĉ1 =
−6

(N − 1)Nτ0

N
∑

i=1

di +
12

(N − 1)N(N + 1)τ0

N
∑

i=1

idi (7)

Since the residuals are centered, the variance of the residuals may be computed as:

σ2
e =

1

N

N
∑

i=1

e2i . (8)

Obviously, the computation of the uncertainties depends on the distribution of the

random fluctuations.

‡ Throughout this paper, we will distinguish a quantity θ from its estimate θ̂ by adding a hatˆat the

top of the estimate symbol.
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Figure 2. Cumulative average of delay measurements minus the arithmetic mean

(D̂ ≈ 10 µs). The dispersion of the average decreases up to 1 000 measurements and

remains constant for a larger number of samples.

2.2.1. Case of a white noise. If {ǫi} is a white Gaussian noise, the variance of the drift

coefficients are given by [4]:

σ2
C0 =

2(2N + 1)

N(N − 1)
σ2
e ≈ 4

N
σ2
e (for large N) (9)

σ2
C1 =

12

N(N − 1)(N + 1)τ 20
σ2
e ≈ 12

N3τ 20
σ2
e . (10)

The 95 % uncertainty domains over C0 and C1 may be assessed as ∆C0 = 2σC0 and

∆C1 = 2σC1.

If the drift may be considered as null, i.e. Ĉ1 < ∆C1, D may be assumed as

constant and we can estimate a 95 % confidence interval over D̂:

∆D =
2√
N
σe (for large N) (11)

(if N < 20, the Student coefficients must be used [5]).

Thus, in the case of a white noise, the uncertainty over D̂ decreases as 1/
√
N , it is

then very useful to perform a huge number of measurements for reducing ∆D.

2.2.2. Case of a strongly correlated noise. However, a limitation of the decreasing of

the uncertainty versus the number of measurements is generally observed. Figure 2

presents the evolution of the arithmetic mean versus the number of samples in the case

of delay measurements (see more details about this experiment in [6]). In this example,

it is particularly clear that it is useless to average more than 1000 samples.

In the time and frequency metrology domain, the Time Deviation estimator (TDev)

[7, 8] is generally used to evaluate the limit number above which the average remains

constant (the flicker floor). Figure 3 shows such a TDev curve in the case of the same

experiment as figure 2.

Once this limit is reached, the random fluctuations of the measurement are no longer

a white Gaussian process and we have to deal with statistically duration dependent

process:
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Figure 4. Example of flicker noise.

• the statistical parameters (mean, standard deviation, drift coefficients, . . . ) depend

on when they are measured

• the statistical parameters depend on the duration of the measurement sequence

• the statistical parameters do not converge if this duration tends toward infinity!

Several types of statistically duration dependent noises exist (random walk, random

run, . . . ) but this paper will focus on the flicker noise because it is generally the first

type of strongly correlated noise which is encountered after the white noise limit.

Figure 4 presents an example of realization of flicker noise. Depending on the region

which is observed, the plot exhibits different behaviors with various means, dispersions

or trends (the beginning of a “false drift” can even be seen at the end of the sequence).

Moreover, the mean of the samples is clearly positive. We can bet that if we waited

longer, the mean would depart more from the origin (above or below) and would tend

toward infinity if the sequence length tend also toward infinity.

In other words, some statistical parameters (the mean in this case) diverge for long

sequence unless a low cut-off frequency of the signal is introduced.
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2.3. Low cut-off frequency, PSD and autocorrelation function

But, what is the physical meaning of such a low cut-off frequency? Is it the inverse

of the duration of the sequence, of the duration from which the measurement device is

powered, of the age of this device or of the age of the Universe? Neither of them, the

next sections will attempt to answer this question.

2.3.1. The moment condition. In order to answer to that question, we need to use

the “moment condition” [9, 10]. Let us consider a linear estimator h(t) which gives an

estimate θ̂ of the quantity θ from N measurements {di}:

θ̂ =
N−1
∑

i=0

h(ti)di =
N−1
∑

i=0

hidi (12)

where θ may be either the mean value D, the constant drift coefficient C0, the linear

drift coefficient C1, . . .

Assuming that the mathematical expectation of θ is null (θ may either be positive

or negative), the variance of this estimate is then:

σ2
θ = E(θ2) = E







[

N−1
∑

i=0

hidi

]2






(13)

where the symbol E(q) stands for the mathematical expectation of the quantity q.

Let us also define H(f), the Fourier transform of the estimator h(t). H(f) is then

the transfer function of the estimator (of the filter) h(t). Assuming that the frequency

samples {H(fi)} (fi ∈ {0, 1/(Nτ0), 2/(Nτ0), . . . , 1/(2τ0)}) are uncorrelated, the variance
σ2
θ may be written likewise as (see Appendix):

σ2
θ =

∫ +∞

−∞

|H(f)|2 Sd(f)df (14)

where Sd(f) is the power spectral density (PSD) of the measurements {di} (see (A-8)

in Appendix for the mathematical definition of the PSD).

The moment condition establishes the equivalence between the sensitivity of the

estimator h(t) for drifts and its convergence for low frequency noises according to the

following inequality:
∫ +∞

−∞

|H(f)|2 fαdf converges

⇔
N−1
∑

i=0

hit
q
i = 0 for 0 ≤ q ≤ −α − 1

2
.

(15)

In the case of a flicker noise, α = −1 and the moment condition becomes:
∫ +∞

−∞

|H(f)|2 f−1df converges ⇔
N−1
∑

i=0

hit
0
i =

N−1
∑

i=0

hi = 0. (16)

What implies this condition on the three estimators that interest us: the arithmetic

mean, the constant drift coefficient and linear drift coefficient?
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The arithmetic mean may be assessed in this way by using hm(t) = 1/N . Therefore,
∑N−1

i=0 hmi 6= 0 proving that it does not converge.

The estimator of the constant drift coefficient is designed for estimating a quantity

which is directly linked to the mean of the measurement sequence. In other words, if

such a mean is not null, this estimator will measure it. Therefore, it cannot give a null

result and
∑N−1

i=0 hmi 6= 0 proving that this estimator does not converge. An example of

such an estimator, φ0(t) = 1/
√
N , will be given in § 2.4 “Chebyshev polynomials”. It

is clear that the estimator does not converge either.

On the other hand, estimators of the linear coefficient drift may be constructed

in such a way that they are not sensitive to a constant (it is an advantage since it

ensures the independence between the 2 drift coefficient estimations). Therefore, these

estimators converge for a flicker noise. An example of such an estimator, φ1(t), see (29),

will be given in § 2.4 “Chebyshev polynomials”.

In other words, a flicker noise exhibits a mean value which does not converge,

i.e. which increases infinitely if the duration of the sequence increases, whereas its

“natural drift” (the false drift of figure 4) is independent on the duration of the sequence.

However, we must keep in mind that the mathematical expectation of these statistical

quantities (arithmetic mean, constant and linear drift coefficient) is equal to zero, only

their variances are not null. To summarize, the variance of the linear drift coefficient

does not depend on the low cut-off frequency (as in the case of an uncorrelated noise)

but the mean and the constant drift coefficient depends on it and diverge if the low

cut-off frequency tends toward zero.

As a consequence, the only visible effect of the low cut-off frequency is to increase

the mean of the sequence.

2.3.2. Meaning of the low cut-off frequency. The answer of the question of the

beginning of this section, i.e. what is the low cut-off frequency, is now obvious: removing

the mean value of a flicker sequence is equivalent to set to zero the amplitude of the

spectrum at f = 0 and, therefore, to set the low cut-off frequency to the inverse of the

duration of the sequence fl = 1/(Nτ0)! The meaning of the low cut-off frequency is

then the inverse of the duration over which we subtract the arithmetic mean. We will

see in § 4.3.2 that this definition of the low cut-off frequency needs to be developed but

it gives interesting clues for understanding.

However, the metrological consequences of the removal of the mean value may

be puzzling: the arithmetic mean of the residuals (after removing the mean value) is

obviously identically null and therefore the variance of this mean is equal to 0! Would it

mean that the estimation of the quantity D is certain, i.e. that ∆D = 0? No, of course,

it means that the mean value of the flicker noise accounts for the accuracy (or rather

the inaccuracy) of the estimation of D and its estimation over the next measurement

sequence will be different. If we want a confidence interval over both measurement

sequences, we have to consider a low cut-off frequency equal to the inverse of the total

duration of these sequences, i.e. the date of the end of the second sequence minus the
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date of the beginning of the first sequence.

We need then to know the expression of the variance of our three statistical

quantities versus the number of measurements N and the low cut-off frequency fl. In

order to perform this calculation, we have to model the PSD of the flicker noise including

its low cut-off frequency.

2.3.3. Modeling the Power Spectral Density of a flicker noise. A flicker noise is also

called 1/f noise because its PSD decreases as the inverse of the frequency. But what

is its behavior below the low cut-off frequency? We can assume that the low cut-off

frequency is due to a “natural” first-order high-pass filter: below fl the high pass filter

has a f 2 slope and above it is constant and equal to 0. Therefore, the PSD Sd(f)

increases as f below fl and decreases as 1/f above fl without discontinuity§ (see figure

5):










Sd(f) = k−1f/f
2
l for f < fl

Sd(f) = k−1/f for fl < f < fh
Sd(f) = 0 for f > fh

(17)

where k−1 is the flicker noise level. The high cut-off frequency fh, which is also necessary

to ensure convergence to the high frequencies, is provided by the sampling process:

fh = 1/(2τ0).

2.3.4. Autocorrelation function. The autocorrelation function Rd(τ) is the Fourier

transform of the PSD Sd(f). It expresses the correlation between two samples separated

by a duration τ : Rd(τ) = E [d(t)d(t+ τ)].

We can then calculate the autocorrelation function from the PSD:

Rd(τ) =

∫ +∞

−∞

STS
d (f)ej2πτfdf (18)

§ For the sake of simplicity, we did not model the high-pass transfer function by f2/(f + fl)
2.
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where STS
d (f) represents the “two sided” PSD, i.e. defined over R. Since STS

d (f) is even,

we prefer generally used the “one sided” PSD defined over R+:
{

Sd(f) = 2STS
d (f) for f ≥ 0

Sd(f) = 0 for f < 0.
(19)

From relationships (18) and (19) and because Sd(f) is purely real, the autocorrelation

function can be rewritten as:

Rd(τ) =

∫ +∞

0

Sd(f) cos(2πτf)df. (20)

Replacing Sd(f) by its model given in (17), it comes:

Rd(τ) = k−1

[
∫ fl

0

f

f 2
l

cos(2πτf)df +

∫ fh

fl

cos(2πτf)

f
df

]

. (21)

The resolution of this integral gives:






















Rd(0) = k−1

[

1
2
+ ln(fh/fl)

]

Rd(τ) = k−1

[

cos(2πflτ)− 1 + 2πflτ sin(2πflτ)

(2πflτ)2

+ Ci(2πτfh)− Ci(2πτfl)

]

(22)

where the Cosine Integral function Ci(x) is defined as [11]:

∀x > 0, Ci(x) = −
∫

∞

x

cos(y)

y
dy. (23)

Let us consider that the low cut-off frequency is very low, i.e. fl ≪ 1/(Nτ0).

This condition is not restrictive since we know that the effect of fl is limited to the

mean value of the sequence. Therefore, we can consider in the first term of (21) that

2πτf ≤ 2πNτ0fl ≪ 2π and then that cos(2πτf) = 1. Thus, (22) may be rewritten as:
{

Rd(0) = k−1

[

1
2
+ ln(fh/fl)

]

Rd(τ) = k−1

[

1
2
+ Ci(2πτfh)− Ci(2πτfl)

] (24)

The Taylor expansion of Ci(x), in the neighborhood of 0, is given by [11]:

∀x ∈ R
+∗, Ci(x) = C + ln(x) +

+∞
∑

n=1

(−1)n
x2n

(2n)!(2n)
(25)

where C ≈ 0.5772 is the Euler-Mascheroni constant.

Since τ ∈ {τ0, 2τ0, . . . , Nτ0}, Ci(2πτfh) = Ci(kπ) with k ∈ {1, 2, . . . , N}, thus

Ci(2πτfh) will oscillate around 0. On the other hand, 2πτfl ≪ 1 and −Ci(2πτfl) may

be approximated by its Taylor expansion at first order: −Ci(2πτfl) ≈ −C − ln(2πτfl).

Therefore, Ci(2πτfh) is negligible regarding −Ci(2πτfl).

This leads to an approximated expression of Rd(τ) for τ 6= 0:

Rd(τ) ≈ k−1

[

1

2
− C − ln |2πτfl|

]

. (26)
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is equal to 2.1 %.

It may be noticed that this expression differs from the one previously published in

[4] because the f slope behavior of Sd(f) below fl was not taken into account.

Figure 6 compares the exact expression of Rd(τ) from relationship (22) with the

approximation given in (26) in the case of N = 50 measurements and the inverse of

the low cut-off frequency 20 times larger than the duration of the sequence. This graph

shows that the approximation (26) is perfectly valid. In the following, we will then

consider that the autocorrelation of a flicker noise is given by:














Rd(0) = k−1

[

1

2
+ ln(fh/fl)

]

Rd(τ) ≈ k−1

[

1

2
− C − ln |2πτfl|

]

.
(27)

We now ought to calculate the variance of the drift coefficients C0 and C1. However,

this task is not so simple because these parameters are not statistically optimized: they

depends on the sampling and, above all, they are strongly correlated. The problem will

be far easier if we adopt a linear fit by using the Chebyshev polynomials.

2.4. Estimation with Chebyshev polynomials

Rather than the classical linear regression of equation (1), let us use the first two

Chebyshev polynomials Φ0(t) and Φ1(t), i.e. the Chebyshev polynomials of degrees,

respectively, 0 and 1:

di = P0Φ0(ti) + P1Φ1(ti) + ǫi (28)

with


















Φ0(t) =
1√
N

Φ1(t) =

√

3

(N − 1)N(N + 1)

[

2
t

τ0
− (N − 1)

]

.
(29)
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2.4.1. Properties of the Chebyshev polynomials. The main advantage of this approach

lies in the orthonormality of these polynomials:

N−1
∑

i=0

Φj(ti)Φk(ti) = δij with i and j ∈ {0, 1} (30)

where δjk is the Kronecker’s delta. Therefore, the different Chebyshev polynomials are

uncorrelated and normalized. Moreover, they are dimensionless and the dimension of

the problem, e.g. the time in our example, is supported by the coefficients P0 and P1.

2.4.2. Calculation of the drift coefficient estimates. We ought to search the estimates

P̂0 and P̂1 which will minimize the residuals {ei}:
di = P̂0Φ0(ti) + P̂1Φ1(ti) + ei. (31)

How can we obtained these estimates? Let us calculate E
[

∑N−1
i=0 Φ0(ti)di

]

and

E
[

∑N−1
i=0 Φ1(ti)di

]

. From (31), it comes:







































































































E

[

N−1
∑

i=0

Φ0(ti)di

]

= E(P̂0)
N−1
∑

i=0

Φ2
0(ti)

+E(P̂1)
N−1
∑

i=0

Φ0(ti)Φ1(ti)

+E

[

N−1
∑

i=0

Φ0(ti)ei

]

E

[

N−1
∑

i=0

Φ1(ti)di

]

= E(P̂0)

N−1
∑

i=0

Φ0(ti)Φ1(ti)

+E(P̂1)

N−1
∑

i=0

Φ2
1(ti)

+E

[

N−1
∑

i=0

Φ1(ti)ei

]

.

(32)
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From (30), we know that
∑N−1

i=0 Φ2
0(ti) =

∑N−1
i=0 Φ2

1(ti) = 1 and that
∑N−1

i=0 Φ0(ti)Φ1(ti) =

0. Furthermore, since the residuals {ei} are, by construction, orthogonal to the

interpolating function Φ0(t) and Φ1(t), (32) may be written as:






















E

[

N−1
∑

i=0

Φ0(ti)di

]

= E(P̂0)

E

[

N−1
∑

i=0

Φ1(ti)di

]

= E(P̂1).

(33)

Thus, the estimation of the Pk coefficients (k ∈ {0, 1}) is quite simple:

P̂k =
N−1
∑

i=0

Φk(ti)di. (34)

2.4.3. From P0, P1 to C0, C1. At last, it is very easy to come back to the C0 and C1

coefficients of the classical linear regression by using the following inverse transform

which is deduced from (28) and (29):






















C0 =
1√
N
P0 −

√

3(N − 1)

N(N + 1)
P1

C1 =
2

τ0

√

3

(N − 1)N(N + 1)
P1.

(35)

Once obtained the variance of P0 and P1, we will use this inverse transform for

deducing the variance of C0 and C1.

For more details about the Chebyshev polynomials see [12] and about their use for

estimation see [9] and [4].

2.5. Calculation principle

2.5.1. Estimation of the coefficient variances. Let us assume that a {di} sequence is

zero mean and without drift: P0 = 0 and P1 = 0. The estimates P̂0 and P̂1 calculated

over this sequence will have the following properties:
{

E(P̂k) = 0

E(P̂ 2
k ) = σ2

Pk

with k ∈ {0, 1} (36)

where σ2
Pk is the variance of the estimate P̂k.

This last equation provides the way for estimating the variances of the coefficients

P0 and P1:

σ2
Pk = E(P̂ 2

k ) =
N−1
∑

i=0

N−1
∑

j=0

Φk(ti)Φk(tj)Rd(ti − tj) with k ∈ {0, 1}. (37)
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2.5.2. Estimation of the variance of the residuals. Since the residuals are centered,

their variance is equal to their second raw moment:

σ2
e = E

(

1

N

N−1
∑

i=0

e2i

)

. (38)

From (31), it comes:

σ2
e = E

{

1

N

N−1
∑

i=0

ei

[

di − P̂0Φ0(ti)− P̂1Φ1(ti)
]

}

(39)

=
1

N

[

E

(

N−1
∑

i=0

eidi

)

− E

(

P̂0

N−1
∑

i=0

eiΦ0(ti)

)

− E

(

P̂1

N−1
∑

i=0

eiΦ1(ti)

)]

.(40)

Since the residuals {ei} are orthogonal to Φ0(t) and Φ1(t), it comes:

σ2
e =

1

N
E

(

N−1
∑

i=0

eidi

)

(41)

=
1

N

{

E

[

N−1
∑

i=0

d2i − P̂0

N−1
∑

i=0

Φ0(ti)di − P̂1

N−1
∑

i=0

Φ1(ti)di

]}

(42)

=
1

N

[

N−1
∑

i=0

Rd(0)− E
(

P̂ 2
0

)

− E
(

P̂ 2
1

)

]

. (43)

At last, we obtain the following relationship:

σ2
e = Rd(0)−

1

N
(σ2

P0 + σ2
P1). (44)

3. Calculations for the flicker noise

Let us apply the general relationships (37) and (44), providing respectively the coefficient

variances and the variance of the residuals, to the case of the flicker noise.

Since we know that the low cut-off frequency only impacts the mean of the

sequence, let us assume that it is far lower than the inverse of the sequence duration:

fl ≪ 1/(Nτ0). In this condition, the autocorrelation is given by (22) and (26).

In the following, we will only detail the calculation of σ2
P0. The Mathematica

notebook detailing the calculations of σ2
P1 and σ2

e is available on request by sending an

email to the corresponding author.

3.1. Variance of P0

The interpolating function Φ0(t) is constant and equal to 1/
√
N . Thus, (37) becomes

the following sum:

σ2
P0 =

1

N

N−1
∑

i=0

N−1
∑

j=0

Rd[(i− j)τ0]. (45)
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In order to separate the constant term and the term depending on τ in Rd(τ), (26) may

be decomposed as:

Rd[(i− j)τ0] = k−1

[

1

2
− C − ln(2πτ0fl)

]

− k−1 ln |i− j|. (46)

Since the autocorrelation function is even:

σ2
P0 =

k−1

N

{

N−1
∑

i=0

Rd(0) + 2
N−1
∑

i=1

i−1
∑

j=0

Rd[(i− j)τ0]

}

(47)

= k−1

{

1

2
+ ln(fh/fl)

+ (N − 1)

[

1

2
− C − ln(2πτ0fl)

]

− 2

N

N−1
∑

i=1

i−1
∑

j=0

ln |i− j|
}

. (48)

The last term may be approximated by an integral:
N−1
∑

i=1

i−1
∑

j=0

ln |i− j| ≈
∫ N−1

1

∫ xi−1

0

ln |xi − xj |dxjdxi (49)

The result of this integral is:
∫ N−1

1

∫ xi−1

0

ln |xi − xj |dxjdxi = − 3N2

4
+ 5N − 2 +

(N − 1)2

2
ln(N − 1)

≈ N2

4
[−3 + 2 ln(N)] for large N (50)

Assuming that N is large, we may approximate (48) by:

σ2
P0 = [2− C − ln (2πflNτ0)]Nk−1. (51)

3.2. Variance of P1

σ2
P1 =

3N

4
k−1. (52)

3.3. Variance of the residuals

σ2
e =

[

−9

4
+ C + ln (2πfhNτ0)

]

k−1. (53)

3.4. Drift coefficient variance versus the variance of the residuals

Since the variance of the residuals σ2
e is more accessible than the flicker noise level k−1,

it is useful to express the variance of the drift coefficients versus σ2
e . Thus, by assuming

that fh = 1/(2τ0) and from (51), (52) and (53), we get:














σ2
P0 =

2− C − ln (2π)− ln (flNτ0)

−9
4
+ C + ln(π) + ln(N)

Nσ2
e

σ2
P1 =

3Nσ2
e

−9 + 4C + 4 ln(π) + 4 ln(N)
.

(54)
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These expressions may be simplified by replacing the constants by their numerical values:














σ2
P0 ≈

[−0.4151− ln (flNτ0)]Nσ2
e

−2, 112 + 4 ln(N)

σ2
P1 ≈

3Nσ2
e

−2, 112 + 4 ln(N)
.

(55)

We must keep in mind that these approximations are valid for large N (N ' 20).

On the other hand, they were calculated by assuming that fl ≪ 1/(Nτ0) but are also

valid for larger fl, i.e. up to fl / 1/(4Nτ0). In the case of fl = 1/(Nτ0), remember than

σ2
P0 = 0 (see § 2.3.2).

Furthermore, these results are suboptimal since the least squares method (classical

or with the Chebyshev polynomials) is optimized for uncorrelated noise. Since we are

dealing with flicker noise, the samples are obviously correlated. In this case, the optimal

solution is given by the Generalized Least Squares.

3.5. Another approach: the Generalized Least Squares (GLS)

3.5.1. Matrix formalization of the problem. Let us define the following vectors:

• ~d is the N -lines vector of the di measurements

• ~ǫ is the N -lines vector of the measurement noise ǫi

• ~P is the 2-lines vector of the Chebyshev parameters P0 and P1.

We can also define the N -lines × 2-columns matrix [Φ] as the interpolating function

matrix:

[Φ] =







Φ0(t0) Φ1(t0)
...

...

Φ0(tN−1) Φ1(tN−1)






. (56)

With these notations, (28) becomes:

~d = [Φ]~P + ~ǫ. (57)

Multiplying by the transposed matrix [Φ]T , it comes:

[Φ]T ~d = [Φ]T [Φ]~P + [Φ]T~ǫ. (58)

From (30) and because E
(

[Φ]T~ǫ
)

= 0, we obtain
~̂
P , the 2-lines vector of the unbiased

Chebyshev parameter estimates:

~̂
P = [Φ]T ~d. (59)

It may be shown that
~̂
P of (59) is an optimal estimator of ~P if ~ǫ is a white Gaussian

noise, i.e. the {ǫi} are uncorrelated.

The GLS, introduced by Aitken in 1934 [13], is a generalization of the least squares

to correlated noises (and to measurements with unequal dispersions). It gives the

optimal solution to (57) when ~ǫ is not a white Gaussian noise.
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3.5.2. Optimal solution for a flicker noise. Let us define the noise covariance matrix

[Cǫ] = E
(

~ǫ~ǫT
)

:

[Cǫ] =











Rd(0) Rd(τ0) . . . Rd ((N − 1)τ0)

Rd(τ0) Rd(0) . . . Rd ((N − 2)τ0)
...

...
. . .

...

Rd ((N − 1)τ0) Rd ((N − 2)τ0) . . . Rd(0)











. (60)

From [14] (see equation (A4.1.4) in § A4.1), the optimal solution
~̂
P

⋆

of (57) is given by:

~̂
P

⋆

= [Ξ][Φ]T [Cǫ]
−1~d (61)

where the matrix [Ξ] is defined as:

[Ξ] =
(

[Φ]T [Cǫ]
−1[Φ]

)

−1
. (62)

In the case of a white Gaussian noise, [Cǫ] = [IN ], the unit matrix N ×N and then

[Ξ] =
(

[Φ]T [Φ]
)

−1
. Since the Chebyshev polynomials are orthonormal, [Φ]T [Φ] = [I2]

and [Ξ] = [I2]. Therefore, (61) reduces to (59).

In the case of a flicker noise, we have to use the expression of Rd(τ) given by (24)

in (60) and compute
~̂
P

⋆

from (62) and (61).

Moreover, [Ξ] is the covariance matrix of the
~̂
P

⋆

estimate vector and [Cǫ]−[Φ][Ξ][Φ]T

is the covariance matrix of the residuals [14]. Hence:
{

σ2
P0⋆ = Ξ1,1

σ2
P1⋆ = Ξ2,2

(63)

and

σ2
e⋆ =

1

N
Tr
{

[Cǫ]− [Φ][Ξ][Φ]T
}

. (64)

In § 4.4, we will compare the GLS estimates (61), their variances (63) and the

variance of the residuals (64) to the ones given by the Chebychev Least Squares in (34),

(51), (52) and (53).

4. Validation of the theoretical results

In order to validate these theoretical relationships, we performed two types of checking:

• a comparison with numerical computations of (37)

• a comparison with Monte-Carlo simulations obtained with a noise simulator.

In all cases, we considered flicker noises with a unity level, i.e. k−1 = 1.
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4.1. Comparison with numerical computations

We computed the result of equation (37) with the exact expression of the autocorrelation

function given by (22) (the Ci(x) function is available in the GNU Scientific Library as

well as in Matlab and Octave). These computations were performed according to two

protocols:

• by varying N with fl constant; we chose N ∈ {16, 64, 256, 1024, 4096, 16384} data

and fl = 1/(65536τ0)

• by varying fl with N constant; we chose τ0/fl ∈ {256, 512, 1024, 4096, 16384, 65536}
and N = 256.

The results are plotted in figure 8 (green circles) and compared to the theoretical values

(blue curves) given by relationships (51), (52) and (53).

4.2. Comparison with Monte-Carlo simulations

The noise simulator we used requires the following input parameters: the inverse of the

low cut-off frequency in terms of sampling step 1/fl = Mτ0, the number of data N (with

N ≤ M), the type of noise α and the noise level kα. It computes a M-sample noise

with a PSD following a fα power law but it keeps only a randomly selected sequence

of N consecutive data. The output of this software is a file containing this N -data

sequence. This software, “bruiteur”, is available on request by sending an email to the

corresponding author.

Thus, thanks to this software, we used the same protocols than with the numerical

computation: we first generated noise sequences for N ∈ {16, 64, 256, 1024, 4096, 16384}
data and fl = 1/(65536τ0). Then, for N = 256 data, we generated noise sequences

for τ0/fl ∈ {256, 512, 1024, 4096, 16384, 65536}. For each of these couple of (N, fl)-

values, 10 000 sequences were generated, the P0 and P1 coefficients were calculated for

each sequence, and the variance of these coefficients were calculated over the 10 000

sequences. The results are plotted in figure 8 (red crosses) and compared to the

theoretical values (blue curves) given by relationships (51), (52) and (53) and to the

numerical computations (green circles).

4.3. Discussion

4.3.1. Variation versus N . The left-hand side of figure 8 shows a very good agreement

between the theoretical curves obtained from our theoretical relationships, the numerical

computations and the Monte-Carlo simulations, proving that the dependence of σ2
P0, σ

2
P1

and σ2
e versus N are correctly modeled by (51), (52) and (53).

A slight discrepancy may be noticed for N = 16 and N = 16384. The latter is due

to the proximity between the length of the sequence (16384τ0) and the inverse of the

low cut-off frequency (65536τ0) and will be addressed in the next section (see § 4.3.2).

On the other hand, the difference for N = 16 is due to the small number of samples

which should prohibit the neglecting of Nk−1 with respect to Nk, as we did for instance
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Figure 8. Behavior of the variance of the P0 parameter (above), of the P1 parameter

(middle) and of the residuals (below) versus the number of data N (left) and the low

cut-off frequency fl (right). On the left side, fl = 1/(65 536 τ0). On the right side,

N = 256. The blue curves are plotted according to our theoretical results expressed

in (51), (52) and (53). The green circles were obtained by numerical resolution. Each

red cross is the average of the variance estimates obtained for 10 000 realizations of

the same process.
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Table 1. Comparison of the theoretical values obtained according to (51), (52), (53)

to the numerical computations and to the Monte-Carlo simulation values of σ2
P0

, σ2
P1

and σ2
e
for N = 256 and fl = 1/(65536τ0). The percentages in brackets indicate the

deviations of the theoretical values from the references (numerical and simulated).

N = 16 Theoretical Numerical Simulation

fl = 1/(65536τ0)

σ2
P0 126.4 126.5 (-0.08 %) 125.6 (+0.7 %)

σ2
P1 12.00 12.08 (-0.7 %) 11.96 (+1 %)

σ2
e

2.244 2.237 (+0.3 %) 2.373 (-6 %)

in (50). However, table 1 shows that the discrepancy remains below the 10 % level

which is perfectly satisfactory for an uncertainty assessment.

Therefore, the approximations of σ2
P0, σ

2
P1 and σ2

e by (51), (52) and (53) may be

considered valid for values of N as small as 16.

4.3.2. Variation versus fl. The agreement between the theoretical curves obtained

from our theoretical relationships, the numerical computations and the Monte-Carlo

simulations is less convincing when we observe the dependence versus the low cut-off

frequency fl (see right-hand side of figure 8). In particular, for the last three values of

fl, obtained for 1/(4T ), 1/(2T ) and 1/T (where T = Nτ0 is the total duration of the

sequence), we observe an increasing gap between the curves and the points.

This should not surprise us concerning σ2
P0 since we know that σ2

P0 = 0 if fl = 1/T .

The approximation (51) was clearly designed for being valid only if fl ≪ 1/T and

provides even a negative value for σ2
P0 if fl = 1/T !

On the other hand, the discrepancy concerning σ2
P1 is more puzzling since it

was expected to not depend on fl, according to the moment condition (see § 2.3.1).

Furthermore, this seems to contradict our conception of the low cut-off frequency which

was defined in § 2.3.2 as “the inverse of the duration over which we subtract the

arithmetic mean”. How the subtraction of a constant value could impact the variance

of the linear drift coefficient?

This apparent paradox is removed if we distinguish a sequence whose low cut-

off frequency is “truly” equal to 1/T from a sequence whose cut-off frequency was

“artificially” set to 1/T . In the first case, which happens in the noise simulator we used

as well as in the numerical computation, the PSD of the sequence is strictly conform to

the model expressed in (17).

In the other case, we are faced to a flicker sequence whose low cut-off frequency

is probably very low, we may even consider that fl → 0, and we remove its arithmetic

mean. But this sequence of duration T has been extracted from a flicker noise sequence

of far longer duration Θ and we may even consider that Θ → ∞. Such an extraction may

be modeled in the direct domain by the multiplication of a Θ-sequence by a T -window.

In the Fourier domain, this operation amounts to perform a convolution product between
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Figure 9. Influence of the very low frequency amplitudes of the spectrum on the first

lobe of the Fourier transform of the window for f = 1/(Nτ0).

the spectrum of the Θ-sequence by the the Fourier transform of the T -window, i.e. by

a narrow sine cardinal. Let us consider the first frequency sample greater than zero (we

don’t care about the amplitude of the null frequency since it will be set to zero), i.e.

f = 1/(Nτ0):

d̃

(

1

Nτ0

)

=

∫ +∞

−∞

D̃(f)
sin
[

πτ0

(

f − 1
Nτ0

)]

π
(

f − 1
Nτ0

) df (65)

where d̃(f) and D̃(f) are the Fourier transform of, respectively, the T -sub-sequence and

of the Θ-sequence. Since the very low frequency amplitudes of D̃(f) may be very high,

their impact on the first lobe of the cardinal sine may be predominating (see figure 9).

Thus, the amplitudes of d̃(f) for the frequency 1/(Nτ0) and its first multiples may be

“polluted” by the very low frequency amplitudes of D̃(f) and its PSD may significantly

depart from the 1/f theoretical model. In that sense, such a sequence is not a “true”

1/f noise. But it is a “truly realistic” flicker noise because we will never encounter a

“true” 1/f noise with a low cut-off frequency exactly equal to the inverse of the sequence

duration!

To summarize, removing the arithmetic mean of a flicker sequence is equivalent to

setting its low cut-off frequency to the inverse of the sequence duration but at the price

of a slight deviation of its spectrum from a perfect flicker spectrum due to this pollution

effect by the very low frequencies.

Nevertheless, table 2 shows that the behavior of σ2
P0, σ

2
P1 and σ2

e is pretty well

fitted by the approximations (51), (52) and (53) for fl ≤ 1/(4Nτ0) since the differences

remains below 10 %.

4.4. Comparison with Generalized Least Squares

In order to compare the GLS estimates (61), their variances (63) and the variance of

the residuals (64) to the approximation given by the Chebychev Least Squares in (34),

(51), (52) and (53), we used the same two types of checking as previously:
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Table 2. Comparison of the theoretical values obtained according to (51), (52), (53)

to the numerical computations and to the Monte-Carlo simulation values of σ2
P0

, σ2
P1

and σ2
e
for N = 256 and fl = 1/(1024τ0). The percentages in brackets indicate the

deviations of the theoretical values from the references (numerical and simulated).

N = 256 Theoretical Numerical Simulation

fl = 1/(1024τ0)

σ2
P0 248.6 261.4 (-5 %) 273.0 (-9 %)

σ2
P1 192.0 179.4 (+7 %) 188.3 (+2 %)

σ2
e

5.017 5.016 (+0.02 %) 5.039 (-0.4 %)

• a comparison with numerical computations of (63) and (64)

• a comparison with Monte-Carlo simulations obtained with a noise simulator

(“bruiteur”).

In all cases, we considered flicker noises with a unity level and we used the same two

protocols as previously:

• varying N with fl constant; we chose N ∈ {16, 64, 256, 1024, 4096} data and

fl = 1/(65536τ0)

• varying fl with N constant; we chose τ0/fl ∈ {256, 512, 1024, 4096, 16384, 65536}
and N = 256.

The results are plotted in figure 10 (green circles for the numerical computations and

red crosses for the Monte-Carlo simulations) and compared to the theoretical values

(blue curves) given by relationships (51), (52) and (53).

Despite the effects due to the low cut-off frequency which were already commented

in § 4.3, figure 10 shows that the variance of the parameters P ⋆
0 and P ⋆

1 are slightly lower

than the theoretical curves, as expected since the GLS is optimal. On the other hand,

the variance of the residuals is slightly higher than the theoretical curve of σ2
e which is

consistent with (44).

However, these differences are very small: looking at the left-hand side of figure

10 (variation versus N), the averaged overestimations of the theoretical curves are

respectively +3 %, +11 % and -4 % (underestimation in this case) for σ2
P0⋆, σ

2
P1⋆ and

σ2
e⋆. This result is confirmed by table 3.

This overestimation of the variances σ2
P0⋆ and σ2

P1⋆ by the theoretical curves is

more visible on the right-hand side of figure 10 (variation versus fl), particularly with

the parameter P ⋆
1 when 1/fl tends toward Nτ0 (fl > 10−3τ−1

0 ). This result is confirmed

by table 4 which exhibits a 30 % overestimation if σ2
P1⋆ is approximated by (52) with

fl = 1/(4Nτ0).

As a conclusion of this comparison with the GLS estimation, once the values for

high fl excluded (fl ≥ 1
4Nτ0

), the difference between σ2
P1⋆ and the theoretical estimation

given by (52) remains below 20 % (15 % on average). This difference is no more than

3 % concerning σ2
P0⋆ and (51) as well as σ2

e⋆ and (53). Since an uncertainty is always
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Figure 10. Behavior of the variance of the P ⋆
0 parameter (above), of the P1⋆ parameter

(middle) and of the residuals (below) versus the number of data N (left) and the low

cut-off frequency fl (right). On the left side, fl = 1/(65 536 τ0). On the right side,

N = 256. The blue curves are plotted according to our theoretical results expressed in

(51), (52) and (53). The green circles were obtained by GLS numerical resolution. Each

red cross is the average of the variance GLS estimates obtained for 10 000 realizations

of the same process.
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Table 3. Comparison of the theoretical values obtained according to (51), (52), (53)

to the GLS numerical computations and to the GLS Monte-Carlo simulation values of

σ2
P0⋆

, σ2
P1⋆

and σ2
e⋆

for N = 256 and fl = 1/(65536τ0). The percentages in brackets

indicate the deviations of the theoretical values from the references (numerical and

simulated).

N = 16 Theoretical Numerical Simulation

fl = 1/(65536τ0)

σ2
P0⋆ 126.4 125.0 (+1.1 %) 123.1 (+3 %)

σ2
P1⋆

12.00 11.16 (+8 %) 11.23 (+7 %)

σ2
e⋆

2.244 2.387 (-6 %) 2.461 (-9 %)

Table 4. Comparison of the theoretical values obtained according to (51), (52), (53)

to the GLS numerical computations and to the GLS Monte-Carlo simulation values of

σ2
P0⋆

, σ2
P1⋆

and σ2
e⋆

for N = 256 and fl = 1/(1024τ0). The percentages in brackets

indicate the deviations of the theoretical values from the references (numerical and

simulated).

N = 256 Theoretical Numerical Simulation

fl = 1/(1024τ0)

σ2
P0⋆

248.6 255.8 (-3 %) 246.8 (+0.8 %)

σ2
P1⋆

192.0 146.8 (+30 %) 167.7 (+15 %)

σ2
e⋆ 5.017 5.166 (-3 %) 5.118 (-2 %)

roughly estimated, the theoretical estimation of the variances given by (51), (52) and

(53) may be considered as valid even for the GLS parameter and residual variances.

Therefore, the theoretical estimation given in this paper may be used for estimating

the variance obtained by GLS, allowing thus to have a quick value without computing

the trace of the N×N matrix [Cǫ]− [Φ][Ξ][Φ]T . In particular, when N is large (typically

N > 5000), operations with such matrix is very time consuming or impossible (this is

why the GLS estimation has not been performed for N = 16384 in figure 10!).

As a consequence, taking into account the low gain and the computational

complexity of GLS, the estimation of linear parameters using the Chebyshev least

squares, i. e. (34), comes as a powerful and very simple alternative although slightly

suboptimal. Finally, this method is still valid when a measurement sequence contains a

mixture of white noise and flicker, which is almost always the case.

5. Application to uncertainty domain estimation

5.1. Confidence interval over the classical drift coefficients

From (35) and knowing that the covariance between P0 and P1 is null, it is possible to

calculate the variances of the classical drift coefficients σ2
C0 and σ2

C1 from the variances
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of the Chebyshev polynomial coefficients σ2
P0 and σ2

P1:














σ2
C0 =

1

N
σ2
P0 +

3(N − 1)

N(N + 1)
σ2
P1 ≈ 1

N
(σ2

P0 + 3σ2
P1)

σ2
C1 =

12

(N − 1)N(N + 1)τ 20
σ2
P1 ≈ 12

N3τ 20
σ2
P1.

(66)

5.1.1. Expressions for fl ≪ 1/(Nτ0). From (51) and (52), we obtain :














σ2
C0 =

[

17

4
− C − ln(2πflNτ0)

]

k−1

σ2
C1 =

9

N2τ 20
k−1.

(67)

As previously, we can express these results in terms of the variance of the residuals

rather than in terms of the noise level k−1. From (53), it comes:














σ2
C0 =

17
4
− C − ln(2πflNτ0)

−9
4
+ C + ln(2πfhNτ0)

σ2
e

σ2
C1 =

9
[

−9
4
+ C + ln(2πfhNτ0)

]

N2τ 20
σ2
e .

(68)

Replacing the high cut-off frequency fh by the Nyquist frequency 1/(2τ0), we obtain

the estimation of the variance of the classical parameters:














σ2
C0 =

17
4
− C − ln(2πflNτ0)

−9
4
+ C + ln(Nπ)

σ2
e

σ2
C1 =

9
[

−9
4
+ C + ln(Nπ)

]

N2τ 20
σ2
e .

(69)

The 95 % confidence interval over the estimates of the parameters C0 and C1 are

then:






















∆C0 = 2

√

17
4
− C − ln(2πflNτ0)

−9
4
+ C + ln(Nπ)

σe ≈ 2

√

1.385− ln(flNτ0)

−0.5281 + ln(Nπ)
σe

∆C1 =
6

Nτ0

√

−9
4
+ C + ln(Nπ)

σe ≈ 6

Nτ0
√

−0.5281 + ln(Nπ)
σe.

(70)

Thus, the uncertainty over C0 is approximately constant and depends very slightly

on the number of measurements. The uncertainty over C1 decreases approximately as

1/N (whereas it decreases as 1/N3/2 for a white noise). Therefore, increasing Nτ0 does

not improve significantly the accuracy of the C0 estimation but improves the accuracy

of the C1 estimation. It remains then useful to increase the length of the measurement

sequence in a flicker context.

On the other hand, increasing N in a constant T -duration sequence improves only

very slightly the accuracy of both parameter estimations.
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5.1.2. Expression for fl = 1/(Nτ0). Let us consider now the case of fl = 1/(Nτ0), i.e.

after removing the arithmetic mean. Remember that in this case, we implicitly set P0 to

0 and then its variance is identically null. Therefore, from (66), σ2
C0 = 3σ2

P1/N . Using

this relationship and replacing fl by 1/(Nτ0), we find:














σ2
C0 =

9

−9 + 4C + 4 ln(2π)
σ2
e

σ2
C1 =

9
[

−9
4
+ C + ln(2π)

]

N2τ 20
σ2
e .

(71)

The 95 % confidence intervals over the estimates of C0 and C1 are then:














∆C0 ≈ 3σe
√

−0.5281 + ln(N)

∆C1 ≈ 6σe

Nτ0
√

−0.5281 + ln(N)
.

(72)

5.2. Confidence interval over the estimate D̂

From (34), we see that the P0 parameter is obtained as:

P0 =
1√
N

N−1
∑

i=0

di. (73)

Since the estimate D̂ is the arithmetic mean of the {di} sequence, D̂ = P0/
√
N .

Therefore, the confidence interval over D̂ is:

∆D =
∆P0√
N

. (74)

5.2.1. Expressions for fl ≪ 1/(Nτ0). From (55) and (74), we find:

∆D = 2

√

−0.4151− ln (flNτ0)

−2, 112 + 4 ln(N)
σe. (75)

What is the purpose of this relationship? Suppose that we have a long measurement

sequence of duration Θ = Mτ0 and that we want to estimate the mean value of this

sequence, DΘ from the arithmetic mean of a subset of this sequence of duration T = Nτ0,

D̂T . In this case, we can use (75) by replacing fl = 1/Θ. The arithmetic mean of the

whole sequence DΘ should be within the interval [D̂T−∆D, D̂T+∆T ] at 95 % confidence.

5.2.2. Expressions for fl = 1/(Nτ0). This is of course the most interesting case. But

remember that if fl = 1/(Nτ0), then ∆P0 = 0 as well as ∆D. Strictly speaking, this is

true. As we already explained in § 2.3.2, it means that we consider that our estimate D̂ is

the true value over T = Nτ0. But, in order to ensure the continuity of the measurements

to adjacent T -sequences (e.g. for a T = 1 day-averaged measurement, the continuity of

the measurement from yesterday to tomorrow), we’d better consider what happened in

the close past and what will happen in the close future by contextualizing our current
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Figure 11. Processing of a sequence of delay measurements. A constant of 9 801 006

ps has been subtracted in order to compare the measurements (in blue) to the residuals

(in green). The least square drift is figured in red.

measurement sequence among the previous and the next one, i.e. by considering a Θ-

duration at least equal to 3T (e.g. for a T = 1 day-averaged measurement, Θ = 3

days).

On the other hand, we saw that the determination accuracy of C0 and C1 is almost

independent on the number of samples in a given T -duration sequence. Similarly, the

variance of the determination of D does not depend on N since this variance has been

set to 0 by removing the mean. However, it is obvious than the results of the arithmetic

mean for different N values and a fixed duration T cannot be exactly the same. How

could we handle these differences with a confidence interval?

Thus, taking into account a low cut-off frequency equal to 3 or 4 times Nτ0 in

(75) will ensure that the confidence interval obtained over the current sequence will be

compatible with the previous and the next estimates as well as with estimates obtained

for different values of N :

∆D = 2

√

−0.4151− ln (4)

−2, 112 + 4 ln(N)
σe ≈

σe
√

−0.5 + ln(N)
. (76)

The use of (76) is then nothing but a recommendation and is not based on a rigorous

foundation.

5.3. Application to real experimental measurements

Figure 11 presents an example of delay measurements affected by a flicker noise (see [6]

for the context of these measurements).

The questions are :

(i) Does this sequence exhibits a linear trend?
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(ii) If not, what is the confidence interval over the mean delay estimation?

The parameter of this sequence are the following:

• N = 2160 data

• τ0 = 20 s

• T = Nτ0 = 12 h

5.3.1. Rough results.

• Linear regression:

– C0 = 9 801 008.68 ps

– C1 = 1.75 · 10−17 s/s = 1.51 ps/day

• Standard deviation of the residuals: σe = 0.51 ps

• Arithmetic mean of the measurements: D̂ = 9 801 009.06 ps.

5.3.2. Application of the confidence interval assessments. By using, respectively, the

relationships (72) and (76), we found:

• ∆C0 = 0.57 ps

• ∆C1 = 2.65 · 10−17 s/s = 2.29 ps/day

• ∆D = 0.18 ps.

5.3.3. Solution. The linear drift coefficient C1 is within 1.51 ± 2.29 ps/day at 95 %

confidence. Therefore, it is fully compatible with a null drift. We can then answer to

the first question that no linear drift is detected in this sequence.

The confidence interval over the whole sequence is: D = 9 801 009.06 ± 0.18 ps.

This confidence interval should be compatible with a measurement of the same type

performed over a 12 h-sequence immediately before or after this one.

5.3.4. Effect of decimation. In order to observe the impact of N for a given duration,

we decimated the number of samples by 3 (N = 720), 10 (N = 216), 30 (N = 72) and

108 (N = 20). We obtained the following results:

(i) N = 720:

• C0 = 9801008.73± 0.61 ps @ 95 %

• C1 = 1.29± 2.44 ps/day @ 95 %

• D = 9801009.05± 0.19 ps @ 95 %

(ii) N = 216:

• C0 = 9801008.77± 0.72 ps @ 95 %

• C1 = 1.31± 2.86 ps/day @ 95 %

• D = 9801009.09± 0.22 ps @ 95 %

(iii) N = 72:
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• C0 = 9801008.65± 0.83 ps @ 95 %

• C1 = 1.79± 3.29 ps/day @ 95 %

• D = 9801009.09± 0.24 ps @ 95 %

(iv) N = 20:

• C0 = 9801008.72± 1.12 ps @ 95 %

• C1 = 1.44± 4.48 ps/day @ 95 %

• D = 9801009.07± 0.31 ps @ 95 %

Then, the confidence intervals increase by a factor less than 2 whereas N is divided by

108. We note also that D̂ is extremely stable versus N : it varies only of 0.04 ps, far

lower than the confidence interval calculated according to (76). This confidence interval

estimation is designed for continuity over different sequences and not for dealing with

decimation.

6. Conclusion

After discussing the physical meaning of the low cut-off frequency which must be

introduced for ensuring the convergence of the statistical parameters in a context of

duration dependent noise, we defined a realistic model of power spectral density for

a flicker noise. From this, we deduced the autocorrelation function of this type of

noise and then a theoretical estimation of the variance of the linear drift parameters

as well as of the arithmetic mean for a flicker noise. Then, we compared this method

of drift estimation with the Generalized Least Square and concluded that our method

is much easier to use although slightly suboptimal. Once the theoretical relationships

for estimating the drift parameter variances were validated by Monte-Carlo simulations

and numerical computations, we were able to establish rigorously confidence intervals

over both drift coefficients and a recommendation for the confidence interval over the

arithmetic mean. Finally, a complete example of processing of a real measurement

sequence was given.

Two issues remain open: how could we model the deviation of a spectrum with a

very low cut-off frequency from a perfect flicker spectrum? How could we rigorously

handle the variations of the arithmetic mean due to decimation? These questions are

not fundamental from the metrological point of view but are important for a thorough

understanding of the notion of low cut-off frequency.

More generally, the approach followed in this paper could be used for assessing

the confidence intervals of various statistical parameters with different types of strongly

correlated noises (random walk, f−3, f−4, . . . noises). For this purpose, the moment

condition is very useful since it establishes a correspondence between convergence for

low frequency noises and sensitivity to drifts. This could be very useful for time and

frequency metrology, but also in many other domains.

On the other hand, as it was already mentioned in a previous paper [10], one may

use these results (or other ones for other types of noises) not to estimate confidence
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intervals over actual measurements but, at the opposite, to simulate different types of

noise in a realistic manner, much more optimized than the simulator we used in this

paper. For example, it would be far better to simulate a very low cut-off frequency by

adding the appropriate drift than by computing a very long noise sequence and keeping

a very small subset of it.
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APPENDIX: Variance of an estimate calculated in the frequency domain

Let us consider a measurement sequence x(t) sampled with a sampling step τ0. In the

same way as (12), let us denote θ̂(t0) the estimate obtained by the interpolating function

h(t) applied to x(t) at the date t0‖:

θ̂(t0) =

N−1
∑

k=0

h

[(

k − N − 1

2

)

τ0

]

xk =

N−1
∑

k=0

hkxk, (A-1)

where xk = x
[

t0 +
(

k − N−1
2

)

τ0
]

. Obviously, whatever the estimator θ is (e.g.

arithmetic mean, constant drift coefficient, linear drift coefficient, . . . ), its estimates

θ̂(t0) will depend on t0 but neither its mathematical expectation nor its variance should

vary: we assume that θ is stationary in this sense (even if it depends on the duration of

the sequence Nτ0).

Let us define the interpolating function h(t) as:

h(t) =

N−1
∑

k=0

hkδ

[

t+

(

k − N − 1

2

)

τ0

]

. (A-2)

The estimate θ̂(t0) may be rewritten as a convolution product:

θ̂(t0) =

∫ +∞

−∞

h(t)x(t− t0)dt =
[

h(t) ∗ x(−t)
]

(t0)
(A-3)

where the over line denotes a conjugate complex.

If θ is a centered Gaussian random variable, its variance is given by¶:

E
(

θ2
)

= E

{

∣

∣

∣

∣

[

h(t) ∗ x(−t)
]

(t0)

∣

∣

∣

∣

2
}

. (A-4)

‖ If the causality must be taken into account, i.e. in the case of real-time processing, (A-1) may be

rewritten as:

θ̂(t0) =

N−1
∑

k=0

h [(k −N − 1) τ0]x [t0 + (k −N − 1) τ0] .

On the other hand, if causality does not matter, we could either write (A-1):

θ̂(t0) =

N−1
∑

k=0

h(kτ0)x(t0 + kτ0).

¶ In a previous paper (see Appendix 1 of [4]), we established the equality:

E
(

θ2
)

= E

{

[∫ +∞

−∞

h(t)x(t)dt

]2
}

=

∫ +∞

0

|H(f)|2 Sx(f)df.

However, we have found recently that the demonstration was flawed. The result remains correct under

certain conditions. The correct demonstration and the conditions where it is true are developed in this

Appendix.
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Assuming the mathematical expectation as both an ensemble average and a time

average, (A-4) becomes:

E
(

θ2
)

=

〈

lim
T→∞

1

T

∫ +T/2

−T/2

∣

∣

∣

∣

[

h(t) ∗ x(−t)
]

(t0)

∣

∣

∣

∣

2

dt0

〉

. (A-5)

Let us define the function G(f, T ) as the “windowed Fourier transform” of a

function g(t):

G(f, T ) =

∫ +T/2

−T/2

g(t)e−j2πftdt, (A-6)

We can apply the Parseval-Plancherel theorem over (A-5):

E
(

θ2
)

=

〈

lim
T→∞

1

T

∫ +∞

−∞

∣

∣

∣
H(f) ·X(f)

∣

∣

∣

2

df

〉

=

〈

lim
T→∞

1

T

∫ +∞

−∞

|H(f)|2 |X(f)|2 df
〉

(A-7)

where H(f) and X(f) are respectively the windowed Fourier transform of h(t) and x(t)

as defined in (A-6).

Since, by definition, the two-sided PSD of x(t) is:

STS
x (f) =

〈

lim
T→∞

1

T
|X(f)|2

〉

, (A-8)

we can rewrite (A-7) as:

E
(

θ2
)

=

∫ +∞

−∞

|H(f)|2 STS
x (f)df =

∫ +∞

0

|H(f)|2 SOS
x (f)df (A-9)

where STS
x (f) and SOS

x (f) are respectively the“Two-Sided” and the “One-Sided” PSD,

see (19).

To conclude, (14) is true if the the signal is stationary, meaning that the Fourier

transform of its variance in the time domain, i.e. the autocorrelation of X(f), is a

Dirac distribution in the frequency domain. It means that all expectations may be

obtained by averaging many realizations of a sequence of independent samples in the

frequency domain, with amplitude expectations corresponding to the considered noise

(e.g. 1/f). However, a slight correlation of the first frequency samples may occur due

to the windowing effect as explained in § 4.3.2.
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